Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(4): e0015324, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38517169

RESUMO

The gut microbiota plays a crucial role in health and is significantly modulated by human diets. In addition to Western diets which are rich in proteins, high-protein diets are used for specific populations or indications, mainly weight loss. In this study, we investigated the effect of protein supplementation on Bacteroides caccae, a Gram-negative gut symbiont. The supplementation with whey proteins led to a significant increase in growth rate, final biomass, and short-chain fatty acids production. A comprehensive genomic analysis revealed that B. caccae possesses a set of 156 proteases with putative intracellular and extracellular localization and allowed to identify amino acid transporters and metabolic pathways. We developed a fully curated genome-scale metabolic model of B. caccae that incorporated its proteolytic activity and simulated its growth and production of fermentation-related metabolites in response to the different growth media. We validated the model by comparing the predicted phenotype to experimental data. The model accurately predicted B. caccae's growth and metabolite production (R2 = 0.92 for the training set and R2 = 0.89 for the validation set). We found that accounting for both ATP consumption related to proteolysis, and whey protein accessibility is necessary for accurate predictions of metabolites production. These results provide insights into B. caccae's adaptation to a high-protein diet and its ability to utilize proteins as a source of nutrition. The proposed model provides a useful tool for understanding the feeding mechanism of B. caccae in the gut microbiome.IMPORTANCEMicrobial proteolysis is understudied despite the availability of dietary proteins for the gut microbiota. Here, the proteolytic potential of the gut symbiont Bacteroides caccae was analyzed for the first time using pan-genomics. This sketches a well-equipped bacteria for protein breakdown, capable of producing 156 different proteases with a broad spectrum of cleavage targets. This functional potential was confirmed by the enhancement of growth and metabolic activities at high protein levels. Proteolysis was included in a B. caccae metabolic model which was fitted with the experiments and validated on external data. This model pinpoints the links between protein availability and short-chain fatty acids production, and the importance for B. caccae to gain access to glutamate and asparagine to promote growth. This integrated approach can be generalized to other symbionts and upscaled to complex microbiota to get insights into the ecological impact of proteins on the gut microbiota.


Assuntos
Bactérias , Bacteroides , Ácidos Graxos Voláteis , Humanos , Proteólise , Bactérias/genética , Ácidos Graxos Voláteis/metabolismo , Peptídeo Hidrolases/metabolismo
2.
Microbiome ; 11(1): 231, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858269

RESUMO

BACKGROUND: With the emergence of metagenomic data, multiple links between the gut microbiome and the host health have been shown. Deciphering these complex interactions require evolved analysis methods focusing on the microbial ecosystem functions. Despite the fact that host or diet-derived fibres are the most abundant nutrients available in the gut, the presence of distinct functional traits regarding fibre and mucin hydrolysis, fermentation and hydrogenotrophic processes has never been investigated. RESULTS: After manually selecting 91 KEGG orthologies and 33 glycoside hydrolases further aggregated in 101 functional descriptors representative of fibre and mucin degradation pathways in the gut microbiome, we used nonnegative matrix factorization to mine metagenomic datasets. Four distinct metabolic profiles were further identified on a training set of 1153 samples, thoroughly validated on a large database of 2571 unseen samples from 5 external metagenomic cohorts and confirmed with metatranscriptomic data. Profiles 1 and 2 are the main contributors to the fibre-degradation-related metagenome: they present contrasted involvement in fibre degradation and sugar metabolism and are differentially linked to dysbiosis, metabolic disease and inflammation. Profile 1 takes over Profile 2 in healthy samples, and unbalance of these profiles characterize dysbiotic samples. Furthermore, high fibre diet favours a healthy balance between profiles 1 and profile 2. Profile 3 takes over profile 2 during Crohn's disease, inducing functional reorientations towards unusual metabolism such as fucose and H2S degradation or propionate, acetone and butanediol production. Profile 4 gathers under-represented functions, like methanogenesis. Two taxonomic makes up of the profiles were investigated, using either the covariation of 203 prevalent genomes or metagenomic species, both providing consistent results in line with their functional characteristics. This taxonomic characterization showed that profiles 1 and 2 were respectively mainly composed of bacteria from the phyla Bacteroidetes and Firmicutes while profile 3 is representative of Proteobacteria and profile 4 of methanogens. CONCLUSIONS: Integrating anaerobic microbiology knowledge with statistical learning can narrow down the metagenomic analysis to investigate functional profiles. Applying this approach to fibre degradation in the gut ended with 4 distinct functional profiles that can be easily monitored as markers of diet, dysbiosis, inflammation and disease. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Mucinas , Disbiose , Microbiota/genética , Metagenoma , Fibras na Dieta , Inflamação , Metagenômica/métodos
3.
Sci Data ; 10(1): 346, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268699

RESUMO

Next generation amplicon sequencing has created a plethora of data from human microbiomes. The accessibility to this scientific data and its corresponding metadata is important for its reuse, to allow for new discoveries, verification of published results, and serving as path for reproducibility. Dietary fiber consumption has been associated with a variety of health benefits that are thought to be mediated by gut microbiota. To enable direct comparisons of the response of the gut microbiome to fiber, we obtained 16S rRNA sequencing data and its corresponding metadata from 11 fiber intervention studies for a total of 2,368 samples. We provide curated and pre-processed genetic data and common metadata for comparison across the different studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fibras na Dieta , Microbiota/genética , Reprodutibilidade dos Testes , RNA Ribossômico 16S/genética
4.
Cancer Epidemiol Biomarkers Prev ; 31(2): 305-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34782392

RESUMO

BACKGROUND: Colorectal cancer screening programs with fecal sample collection may provide a platform for population-based gut microbiome disease research. We investigated sample collection and storage method impact on the accuracy and stability of the V3-V4 region of the 16S rRNA genes and bacterial quantity across seven different collection methods [i.e., no solution, two specimen collection cards, and four types of fecal immunochemical test (FIT) used in four countries] among 19 healthy volunteers. METHODS: Intraclass correlation coefficients (ICC) were calculated for the relative abundance of the top three phyla, the most abundant genera, alpha diversity metrics, and the first principal coordinates of the beta diversity matrices to estimate the stability of microbial profiles after storage for 7 days at room temperature, 4°C or 30°C, and after screening for the presence of occult blood in the stool. In addition, accuracy was estimated for samples frozen immediately compared to samples with no solution (i.e., the putative gold standard). RESULTS: When compared with the putative gold standard, we observed significant variation for all collection methods. However, interindividual variability was much higher than the variability introduced by the collection method. Stability ICCs were high (≥0.75) for FIT tubes that underwent colorectal cancer screening procedures. The relative abundance of Actinobacteria (0.65) was an exception and was lower for different FIT tubes stored at 30°C (range, 0.41-0.90) and room temperature (range, 0.06-0.94). CONCLUSIONS: Paper-based collection cards and different types of FIT are acceptable tools for microbiome measurements. IMPACT: Our findings inform on the utility of commonly used fecal sample collection methods for developing microbiome-focused cohorts nested within screening programs.


Assuntos
Neoplasias Colorretais , Microbiota , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Manejo de Espécimes/métodos
5.
Front Microbiol ; 12: 632567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690938

RESUMO

Dietary fibers impact gut colonic health, through the production of short-chain fatty acids. A low-fiber diet has been linked to lower bacterial diversity, obesity, type 2 diabetes, and promotion of mucosal pathogens. Glycoside hydrolases (GHs) are important enzymes involved in the bacterial catabolism of fiber into short-chain fatty acids. However, the GH involved in glycan breakdown (adhesion, hydrolysis, and fermentation) are organized in polysaccharide utilization loci (PUL) with complex modularity. Our goal was to explore how the capacity of strains, from the Bacteroidetes phylum, to grow on fiber could be predicted from their genome sequences. We designed an in silico pipeline called FiberGrowth and independently validated it for seven different fibers, on 28 genomes from Bacteroidetes-type strains. To do so, we compared the existing GH annotation tools and built PUL models by using published growth and gene expression data. FiberGrowth's prediction performance in terms of true positive rate (TPR) and false positive rate (FPR) strongly depended on available data and fiber: arabinoxylan (TPR: 0.89 and FPR: 0), inulin (0.95 and 0.33), heparin (0.8 and 0.22) laminarin (0.38 and 0.17), levan (0.3 and 0.06), mucus (0.13 and 0.38), and starch (0.73 and 0.41). Being able to better predict fiber breakdown by bacterial strains would help to understand their impact on human nutrition and health. Assuming further gene expression experiment along with discoveries on structural analysis, we hope computational tools like FiberGrowth will help researchers prioritize and design in vitro experiments.

6.
Sci Rep ; 11(1): 17630, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480059

RESUMO

Interactions between the prokaryotic microbiome and eukaryotic parasites in the vertebrate gut may affect overall host health and disease. While intertropical areas exhibit a high rate of parasites carriers, such interactions are understudied in these populations. Our objectives were to (1) describe the gut microbiome of individuals living in Madagascar, (2) identify potential associations between bacterial taxa and parasites colonizing the digestive tract and (3) highlight main determinants of the gut microbiota composition in this developing country. Metadata (socioeconomic, diet, clinical) and fecal samples were collected from 219 volunteers from North-West Madagascar (Mahajanga). Fecal microbiome was assessed through 16S rRNA gene sequencing and metabolomics, and related to dietary habits and parasites carriage. We highlight important Malagasy gut microbiome peculiarities. Out of three detected enterotypes, only one is similar to that observed in Westernized countries (Ruminococcus-driven). Functions associated with the two others (Clostridium sensu stricto-driven and Escherichia/Shigella-driven) are mostly directed toward amino acids biosynthesis and degradation, respectively. Diet and protozoan carriage were the main drivers of microbiota composition. High protozoan carriage was associated with higher diversity, richness and microbial functionalities. The gut microbiome of Malagasy strongly differs from that of Westernized countries. Asymptomatic protozoan carriage and dietary habits are the external factors with the deepest impact on gut microbiome. Further studies are needed to understand whether gut microbial richness constitute a predilection niche for protozoans colonization, due to their gazing features, or whether the parasites themselves induce a higher bacterial richness.


Assuntos
Dieta , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Parasitos/isolamento & purificação , Adulto , Animais , Comportamento Alimentar , Feminino , Humanos , Madagáscar , Masculino , Metabolômica
7.
mSystems ; 6(5): e0055821, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519530

RESUMO

The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized yet. We used in vitro fermentation systems inoculated with human fecal samples to monitor the effect of repetitive NO pulses on the gut microbiota. NO exposure increased the redox potential and modified the fermentation profile and gas production. The overall metabolome was modified, reflecting less strict anaerobic conditions and shifts in amino acid and nitrogen metabolism. NO exposure led to a microbial shift in diversity with a decrease in Clostridium leptum group and Faecalibacterium prausnitzii biomass and an increased abundance of the Dialister genus. Escherichia coli, Enterococcus faecalis, and Proteus mirabilis operational taxonomic unit abundance increased, and strains from those species isolated after NO stress showed resistance to high NO concentrations. As a whole, NO quickly changed microbial fermentations, functions, and composition in a pulse- and dose-dependent manner. NO could shift, over time, the trophic chain to conditions that are unfavorable for strict anaerobic microbial processes, implying that a prolonged or uncontrolled inflammation has detrimental and irreversible consequences on the human microbiome. IMPORTANCE Gut microbiota dysbiosis has been associated with inflammatory diseases. The human inflammatory response leads to an overproduction of nitric oxide (NO) in the gut. However, so far, the influence of NO on the human gut microbiota has not been characterized. In this study, we used in vitro fermentation systems with human fecal samples to understand the effect of NO on the microbiota: NO modified the microbial composition and its functionality. High NO concentration depleted the microbiota of beneficial butyrate-producing species and favored potentially deleterious species (E. coli, E. faecalis, and P. mirabilis), which we showed can sustain high NO concentrations. Our work shows that NO may participate in the vicious circle of inflammation, leading to detrimental and irreversible consequences on human health.

8.
Front Nutr ; 8: 637010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179053

RESUMO

Gut microbiota and exercise have recently been shown to be interconnected. Both moderate and intense exercise are typically part of the training regimen of endurance athletes, but they exert different effects on health. Moderate exercise has positive effects on the health of average athletes, such as a reduction in inflammation and intestinal permeability and an improvement in body composition. It also induces positive changes in the gut microbiota composition and in the microbial metabolites produced in the gastrointestinal tract. Conversely, intense exercise can increase gastrointestinal epithelial wall permeability and diminish gut mucus thickness, potentially enabling pathogens to enter the bloodstream. This, in turn, may contribute to the increase in inflammation levels. However, elite athletes seem to have a higher gut microbial diversity, shifted toward bacterial species involved in amino acid biosynthesis and carbohydrate/fiber metabolism, consequently producing key metabolites such as short-chain fatty acids. Moreover, rodent studies have highlighted a bidirectional relationship, with exercise impacting the gut microbiota composition while the microbiota may influence performance. The present review focuses on gut microbiota and endurance sports and how this interconnection depends upon exercise intensity and training. After pointing out the limits of the studies so far available, we suggest that taking into account the microbiota composition and its metabolic contribution to human host health could help in monitoring and modulating athletes' health and performance. Such an integrated approach should help in the design of microbiome-based solutions for health or performance.

9.
Microbiome ; 8(1): 141, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004077

RESUMO

BACKGROUND: Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. RESULTS: Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for ß-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. CONCLUSION: By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. Video Abstract.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota/fisiologia , Microfluídica , Bactérias/genética , Humanos , Masculino , Metagenômica , Microbiota/genética , Pessoa de Meia-Idade
10.
World J Gastroenterol ; 25(27): 3572-3589, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31367158

RESUMO

BACKGROUND: Mucosal healing has become a therapeutic goal to achieve stable remission in patients with inflammatory bowel diseases. To achieve this objective, overlapping actions of complex cellular processes, such as migration, proliferation, and differentiation, are required. These events are longitudinally and tightly controlled by numerous factors including a wide range of distinct regulatory proteins. However, the sequence of events associated with colon mucosal repair after colitis and the evolution of the luminal content characteristics during this process have been little studied. AIM: To document the evolution of colon mucosal characteristics during mucosal healing using a mouse model with chemically-induced colitis. METHODS: C57BL/6 male mice were given 3.5% dextran sodium sulfate (DSS) in drinking water for 5 d. They were euthanized 2 (day 7), 5 (day 10), 8 (day 13), and 23 (day 28) d after DSS removal. The colonic luminal environment and epithelial repair processes during the inflammatory flare and colitis resolution were analyzed with reference to a non-DSS treated control group, euthanized at day 0. Epithelial repair events were assessed histo-morphologically in combination with functional permeability tests, expression of key inflammatory and repairing factors, and evaluation of colon mucosa-adherent microbiota composition by 16S rRNA sequencing. RESULTS: The maximal intensity of colitis was concomitant with maximal alterations of intestinal barrier function and histological damage associated with goblet cell depletion in colon mucosa. It was recorded 2 d after termination of the DSS-treatment, followed by a progressive return to values similar to those of control mice. Although signs of colitis were severe (inflammatory cell infiltrate, crypt disarray, increased permeability) and associated with colonic luminal alterations (hyperosmolarity, dysbiosis, decrease in short-chain fatty acid content), epithelial healing processes were launched early during the inflammatory flare with increased gene expression of certain key epithelial repair modulators, including transforming growth factor-ß, interleukin (Il)-15, Il-22, Il-33, and serum amyloid A. Whereas signs of inflammation progressively diminished, luminal colonic environment alterations and microscopic abnormalities of colon mucosa persisted long after colitis induction. CONCLUSION: This study shows that colon repair can be initiated in the context of inflamed mucosa associated with alterations of the luminal environment and highlights the longitudinal involvement of key modulators.


Assuntos
Colite Ulcerativa/imunologia , Colo/patologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/patologia , Regeneração/imunologia , Animais , Movimento Celular , Proliferação de Células , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colo/citologia , Colo/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , RNA Ribossômico 16S
11.
Front Microbiol ; 10: 1286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275257

RESUMO

The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, ß-D-N-acetyl-glucosaminidase, ß-D-N-acetyl-galactosaminidase, and/or ß-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans.

12.
Nutrients ; 11(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823387

RESUMO

Mucosal healing after an inflammatory flare is associated with lasting clinical remission. The aim of the present work was to evaluate the impact of the amount of dietary protein on epithelial repair after an acute inflammatory episode. C57BL/6 DSS-treated mice received isocaloric diets with different levels of dietary protein: 14% (P14), 30% (P30) and 53% (P53) for 3 (day 10), 6 (day 13) and 21 (day 28) days after the time of colitis maximal intensity. While the P53 diet worsened the DSS- induced inflammation both in intensity and duration, the P30 diet, when compared to the P14 diet, showed a beneficial effect during the epithelial repair process by accelerating inflammation resolution, reducing colonic permeability and increasing epithelial repair together with epithelial hyperproliferation. Dietary protein intake also impacted mucosa-adherent microbiota composition after inflammation since P30 fed mice showed increased colonization of butyrate-producing genera throughout the resolution phase. This study revealed that in our colitis model, the amount of protein in the diet modulated mucosal healing, with beneficial effects of a moderately high-protein diet, while very high-protein diet displayed deleterious effects on this process.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Ração Animal , Animais , Dieta , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Nephrol Dial Transplant ; 34(7): 1135-1144, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462346

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. IgA is mainly produced by the gut-associated lymphoid tissue (GALT). Both experimental and clinical data suggest a role of the gut microbiota in this disease. We aimed to determine if an intervention targeting the gut microbiota could impact the development of disease in a humanized mouse model of IgAN, the α1KI-CD89Tg mice. METHODS: Four- and 12-week old mice were divided into two groups to receive either antibiotics or vehicle control. Faecal bacterial load and proteinuria were quantified both at the beginning and at the end of the experiment, when blood, kidneys and intestinal tissue were collected. Serum mouse immunoglobulin G (mIgG) and human immunoglobulin A1 (hIgA1)-containing complexes were quantified. Renal and intestinal tissue were analysed by optical microscopy after haematoxylin and eosin colouration and immunohistochemistry with anti-hIgA and anti-mouse CD11b antibodies. RESULTS: Antibiotic treatment efficiently depleted the faecal microbiota, impaired GALT architecture and impacted mouse IgA production. However, while hIgA1 and mIgG serum levels were unchanged, the antibiotic treatment markedly prevented hIgA1 mesangial deposition, glomerular inflammation and the development of proteinuria. This was associated with a significant decrease in circulating hIgA1-mIgG complexes. Notably, final faecal bacterial load strongly correlated with critical clinical and pathophysiological features of IgAN such as proteinuria and hIgA1-mIgG complexes. In addition, treatment with broad-spectrum antibiotics reverted established disease. CONCLUSIONS: These data support an essential role of the gut microbiota in the generation of mucosa-derived nephrotoxic IgA1 and in IgAN development, opening new avenues for therapeutic approaches in this disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Glomerulonefrite por IGA , Animais , Feminino , Masculino , Camundongos , Administração Oral , Antibacterianos/administração & dosagem , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/microbiologia
14.
Mol Nutr Food Res ; 62(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994235

RESUMO

SCOPE: Food structure is a key factor controlling digestion and nutrient absorption. We test the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. METHODS & RESULTS: Rats (n = 40) are fed for 3 weeks with two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and microstructure levels. After an overnight fasting, they ingest a 15 N-labeled LFE or GCE test meal and are euthanized 0, 15 min, 1 h, and 5 h later. 15 N enrichment in intestinal contents and blood are measured. Gastric emptying, protein digestion kinetics, 15 N absorption, and incorporation in blood protein and urea are faster with LFE than GCE. At 15 min time point, LFE group shows higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation leads to higher expression of cationic amino acid transporters in ileum of LFE compared to GCE. LFE diet raises cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increases fecal Parabacteroides relative abundance but decreases Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. CONCLUSION: Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value.


Assuntos
Emulsões/química , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lipoproteínas/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/farmacocinética , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Proteínas Alimentares/farmacocinética , Digestão , Emulsões/farmacologia , Mucosa Intestinal/fisiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Lipoproteínas/farmacologia , Masculino , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/farmacocinética , Ratos Wistar
15.
Mol Nutr Food Res ; 61(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28512779

RESUMO

SCOPE: Few studies have evaluated in vivo the impact of food structure on digestion, absorption of nutrients and on microbiota composition and metabolism. In this study we evaluated in rat the impact of two structures of protein emulsion in food on gut microbiota, luminal content composition, and intestinal characteristics. METHODS AND RESULTS: Rats received for 3 weeks two diets of identical composition but based on lipid-protein matrices of liquid fine (LFE) or gelled coarse (GCE) emulsion. LFE diet led to higher abundance, when compared to the GCE, of Lactobacillaceae (Lactobacillus reuteri) in the ileum, higher ß-diversity of the caecum mucus-associated bacteria. In contrast, the LFE diet led to a decrease in Akkermansia municiphila in the caecum. This coincided with heavier caecum content and higher amount of isovalerate in the LFE group. LFE diet induced an increased expression of (i) amino acid transporters in the ileum (ii) glucagon in the caecum, together with an elevated level of GLP-1 in portal plasma. However, these intestinal effects were not associated with modification of food intake or body weight gain. CONCLUSION: Overall, the structure of protein emulsion in food affects the expression of amino acid transporters and gut peptides concomitantly with modification of the gut microbiota composition and activity. Our data suggest that these effects of the emulsion structure are the result of a modification of protein digestion properties.


Assuntos
Ceco/microbiologia , Proteínas Alimentares/química , Microbioma Gastrointestinal , Íleo/microbiologia , Intestinos/microbiologia , Animais , Glicemia/metabolismo , Composição Corporal , Colesterol/sangue , DNA Bacteriano/isolamento & purificação , Dieta , Ácidos Graxos não Esterificados/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Lactobacillaceae/isolamento & purificação , Masculino , RNA Ribossômico 16S/isolamento & purificação , Ratos , Ratos Wistar , Triglicerídeos/sangue
16.
Sci Rep ; 7: 40248, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091525

RESUMO

The digestion of dietary fibers is a major function of the human intestinal microbiota. So far this function has been attributed to the microorganisms inhabiting the colon, and many studies have focused on this distal part of the gastrointestinal tract using easily accessible fecal material. However, microbial fermentations, supported by the presence of short-chain fatty acids, are suspected to occur in the upper small intestine, particularly in the ileum. Using a fosmid library from the human ileal mucosa, we screened 20,000 clones for their activities against carboxymethylcellulose and xylans chosen as models of the major plant cell wall (PCW) polysaccharides from dietary fibres. Eleven positive clones revealed a broad range of CAZyme encoding genes from Bacteroides and Clostridiales species, as well as Polysaccharide Utilization Loci (PULs). The functional glycoside hydrolase genes were identified, and oligosaccharide break-down products examined from different polysaccharides including mixed-linkage ß-glucans. CAZymes and PULs were also examined for their prevalence in human gut microbiome. Several clusters of genes of low prevalence in fecal microbiome suggested they belong to unidentified strains rather specifically established upstream the colon, in the ileum. Thus, the ileal mucosa-associated microbiota encompasses the enzymatic potential for PCW polysaccharide degradation in the small intestine.


Assuntos
Fibras na Dieta/metabolismo , Fibras na Dieta/microbiologia , Microbioma Gastrointestinal , Íleo/microbiologia , Bacteroides/metabolismo , Metabolismo dos Carboidratos , Carboximetilcelulose Sódica/metabolismo , Mapeamento Cromossômico , Clostridiales/metabolismo , Fezes/microbiologia , Humanos , Metagenoma , Metagenômica , Xilanos/metabolismo
17.
PLoS Comput Biol ; 12(12): e1005252, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27984592

RESUMO

Whole Genome Shotgun (WGS) metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs) accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF) problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other metabolic processes in the gut or in other ecosystems.


Assuntos
Microbioma Gastrointestinal/genética , Metagenômica/métodos , Algoritmos , Bactérias/genética , Bactérias/metabolismo , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Fibras na Dieta/metabolismo , Fezes/microbiologia , Fermentação , Humanos
18.
Front Microbiol ; 7: 455, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065999

RESUMO

Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations, and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability, and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

19.
Inflamm Bowel Dis ; 22(4): 763-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26963567

RESUMO

BACKGROUND: NOD2 mutations are associated with Crohn's disease (CD). Both CD (in human) and Nod2 deficiency (in mice) are characterized by increased mucosal CD4 T-cells, an altered permeability and a microbial dysbiosis. However, the respective roles of the gut epithelial and immune compartments on the phenotype are not known. METHODS: Microbial composition, epithelial peptide secretion, intestinal permeability, and immune cell composition of Peyer patches were studied in Nod2 knock-out mice transplanted with wild-type bone marrow cells and vice versa. RESULTS: The nonhematopoietic cells control the microbiota composition and epithelial secretion of mucins and antimicrobial peptides. These parameters are correlated with recurrent associations between bacterial species and luminal products. In contrast, Nod2 in the hematopoietic compartment regulates the epithelial permeability and the gut-associated lymphoid tissue independently of the bacterial composition. CONCLUSIONS: The immune system and the gut permeability in one hand and the microbial and epithelial peptide compositions in the other hand are separate couples of interdependent parameters, both controlled by Nod2 in either the hematopoietic or nonhematopoietic lineages.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal , Células-Tronco Hematopoéticas/microbiologia , Homeostase/fisiologia , Mucosa Intestinal/microbiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Animais , Disbiose/metabolismo , Disbiose/patologia , Células-Tronco Hematopoéticas/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout
20.
Environ Microbiol ; 17(12): 4954-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235304

RESUMO

Gut microbiota richness and stability are important parameters in host-microbe symbiosis. Diet modification, notably using dietary fibres, might be a way to restore a high richness and stability in the gut microbiota. In this work, during a 6-week nutritional trial, 19 healthy adults consumed a basal diet supplemented with 10 or 40 g dietary fibre per day for 5 days, followed by 15-day washout periods. Fecal samples were analysed by a combination of 16S rRNA gene pyrosequencing, intestinal cell genotoxicity assay, metatranscriptomics sequencing approach and short-chain fatty analysis. This short-term change in the dietary fibre level did not have the same impact for all individuals but remained significant within each individual gut microbiota at genus level. Higher microbiota richness was associated with higher microbiota stability upon increased dietary fibre intake. Increasing fibre modulated the expression of numerous microbiota metabolic pathways such as glycan metabolism, with genes encoding carbohydrate-active enzymes active on fibre or host glycans. High microbial richness was also associated with high proportions of Prevotella and Coprococcus species and high levels of caproate and valerate. This study provides new insights on the role of gut microbial richness in healthy adults upon dietary changes and host microbes' interaction.


Assuntos
Dieta/métodos , Fibras na Dieta/administração & dosagem , Ácidos Graxos/análise , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Adulto , Clostridiales/genética , Clostridiales/isolamento & purificação , Suplementos Nutricionais , Feminino , Humanos , Masculino , Prevotella/genética , Prevotella/isolamento & purificação , RNA Ribossômico 16S/genética , Simbiose , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA