Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39040644

RESUMO

The brain's microvascular cerebral capillary network plays a vital role in maintaining neuronal health, yet capillary dynamics are still not well understood due to limitations in existing imaging techniques. Here, we present Single Capillary Reporters (SCaRe) for transcranial Ultrasound Localization Microscopy (ULM), a novel approach enabling non-invasive, whole-brain mapping of single capillaries and estimates of their transit-time as a neurovascular biomarker. We accomplish this first through computational Monte Carlo and ultrasound simulations of microbubbles flowing through a fully-connected capillary network. We unveil distinct capillary flow behaviors which informs methodological changes to ULM acquisitions to better capture capillaries in vivo. Subsequently, applying SCaRe-ULM in vivo, we achieve unprecedented visualization of single capillary tracks across brain regions, analysis of layer-specific capillary heterogeneous transit times (CHT), and characterization of whole microbubble trajectories from arterioles to venules. Lastly, we evaluate capillary biomarkers using injected lipopolysaccharide to induce systemic neuroinflammation and track the increase in SCaRe-ULM CHT, demonstrating the capability to detect subtle capillary functional changes. SCaRe-ULM represents a significant advance in studying microvascular dynamics, offering novel avenues for investigating capillary patterns in neurological disorders and potential diagnostic applications.

2.
Phys Med Biol ; 69(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38157550

RESUMO

Objective. Linking cavitation and anatomy was found to be important for predictable outcomes in focused-ultrasound blood-brain-barrier-opening and requires high resolution cavitation mapping. However, cavitation mapping techniques for planning and monitoring of therapeutic procedures either (1) do not leverage the full resolution capabilities of ultrasound imaging or (2) place constraints on the length of the therapeutic pulse. This study aimed to develop a high-resolution technique that could resolve vascular anatomy in the cavitation map.Approach. Herein, we develop BandPass-sampled-equivalent-time-active-cavitation-imaging (BP-ETACI), derived from bandpass sampling and dual-frequency contrast imaging at 12.5 MHz to produce cavitation maps prior and during blood-brain barrier opening with long therapeutic bursts using a 1.5 MHz focused transducer in the brain of C57BL/6 mice.Main results. The BP-ETACI cavitation maps were found to correlate with the vascular anatomy in ultrasound localization microscopy vascular maps and in histological sections. Cavitation maps produced from non-blood-brain-barrier disrupting doses showed the same cavitation-bearing vasculature as maps produced over entire blood-brain-barrier opening procedures, allowing use for (1) monitoring focused-ultrasound blood-brain-barrier-opening (FUS-BBBO), but also for (2) therapy planning and target verification.Significance. BP-ETACI is versatile, created high resolution cavitation maps in the mouse brain and is easily translatable to existing FUS-BBBO experiments. As such, it provides a means to further study cavitation phenomena in FUS-BBBO.


Assuntos
Barreira Hematoencefálica , Microbolhas , Camundongos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Encéfalo/diagnóstico por imagem , Ultrassonografia , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA