Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
iScience ; 26(4): 106340, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009213

RESUMO

Arterial ischemic stroke is common in neonates-1 per 2,300-5,000 births-and therapeutic targets remain insufficiently defined. Sphingosine-1-phosphate receptor 2 (S1PR2), a major regulator of the CNS and immune systems, is injurious in adult stroke. Here, we assessed whether S1PR2 contributes to stroke induced by 3 h transient middle cerebral artery occlusion (tMCAO) in S1PR2 heterozygous (HET), knockout (KO), and wild type (WT) postnatal day 9 pups. HET and WT of both sexes displayed functional deficits in Open Field test whereas injured KO at 24 h reperfusion performed similarly to naives. S1PR2 deficiency protected neurons, attenuated infiltration of inflammatory monocytes, and altered vessel-microglia interactions without reducing increased cytokine levels in injured regions at 72 h. Pharmacologic inhibition of S1PR2 after tMCAO by JTE-013 attenuated injury 72 h after tMCAO. Importantly, the lack of S1PR2 alleviated anxiety and brain atrophy during chronic injury. Altogether, we identify S1PR2 as a potential new target for mitigating neonatal stroke.

2.
Front Cell Neurosci ; 17: 1294746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269113

RESUMO

Recent data showed that prenatal alcohol exposure (PAE) impairs the "placenta-brain" axis controlling fetal brain angiogenesis in human and preclinical models. Placental growth factor (PlGF) has been identified as a proangiogenic messenger between these two organs. CD146, a partner of the VEGFR-1/2 signalosome, is involved in placental angiogenesis and exists as a soluble circulating form. The aim of the present study was to investigate whether placental CD146 may contribute to brain vascular defects described in fetal alcohol spectrum disorder. At a physiological level, quantitative reverse transcription polymerase chain reaction experiments performed in human placenta showed that CD146 is expressed in developing villi and that membrane and soluble forms of CD146 are differentially expressed from the first trimester to term. In the mouse placenta, a similar expression pattern of CD146 was found. CD146 immunoreactivity was detected in the labyrinth zone and colocalized with CD31-positive endothelial cells. Significant amounts of soluble CD146 were quantified by ELISA in fetal blood, and the levels decreased after birth. In the fetal brain, the membrane form of CD146 was the majority and colocalized with microvessels. At a pathophysiological level, PAE induced marked dysregulation of CD146 expression. The soluble form of CD146 decreased in both placenta and fetal blood, whereas it increased in the fetal brain. Similarly, the expression of several members of the CD146 signalosome, such as VEGFR2 and PSEN, was differentially impaired between the two organs by PAE. At a functional level, targeted repression of placental CD146 by in utero electroporation (IUE) of CRISPR/Cas9 lentiviral plasmids resulted in (i) a decrease in cortical vessel density, (ii) a loss of radial vascular organization, and (iii) a reduced density of oligodendrocytes. Statistical analysis showed that the more the vasculature was impaired, the more the cortical oligodendrocyte density was reduced. Altogether, these data support that placental CD146 contributes to the proangiogenic "placenta-brain" axis and that placental CD146 dysfunction contributes to the cortical oligo-vascular development. Soluble CD146 would represent a promising placental biomarker candidate representative of alcohol-induced neurovascular defects in neonates, as recently suggested by PlGF (patents WO2016207253 and WO2018100143).

3.
Transl Stroke Res ; 13(3): 449-461, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34674145

RESUMO

The fetus is strongly dependent on nutrients from the mother, including polyunsaturated fatty acids (PUFA). In adult animals, n-3 PUFA ameliorates stroke-mediated brain injury, but the modulatory effects of different PUFA content in maternal diet on focal arterial stroke in neonates are unknown. This study explored effects of maternal n-3 or n-6 enriched PUFA diets on neonatal stroke outcomes. Pregnant mice were assigned three isocaloric diets until offspring reached postnatal day (P) 10-13: standard, long-chain n-3 PUFA (n-3) or n-6 PUFA (n-6) enriched. Fatty acid profiles in plasma and brain of mothers and pups were determined by gas chromatography-mass spectrometry and cytokines/chemokines by multiplex protein analysis. Transient middle cerebral artery occlusion (tMCAO) was induced in P9-10 pups and cytokine and chemokine accumulation, caspase-3 and calpain-dependent spectrin cleavage and brain infarct volume were analyzed. The n-3 diet uniquely altered brain lipid profile in naïve pups. In contrast, cytokine and chemokine levels did not differ between n-3 and n-6 diet in naïve pups. tMCAO triggered accumulation of inflammatory cytokines and caspase-3-dependent and -independent cell death in ischemic-reperfused regions in pups regardless of diet, but magnitude of neuroinflammation and caspase-3 activation were attenuated in pups on n-3 diet, leading to protection against neonatal stroke. In conclusion, maternal/postnatal n-3 enriched diet markedly rearranges neonatal brain lipid composition and modulates the response to ischemia. While standard diet is sufficient to maintain low levels of inflammatory cytokines and chemokines under physiological conditions, n-3 PUFA enriched diet, but not standard diet, attenuates increases of inflammatory cytokines and chemokines in ischemic-reperfused regions and protects from neonatal stroke.


Assuntos
Ácidos Graxos Ômega-3 , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Caspase 3/metabolismo , Quimiocinas , Citocinas/metabolismo , Dieta , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/metabolismo , Feminino , Camundongos , Gravidez , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/prevenção & controle
4.
Neurotherapeutics ; 18(3): 1939-1952, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34235636

RESUMO

Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.


Assuntos
Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Neuroproteção/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Vesículas Extracelulares/transplante , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/prevenção & controle
5.
Neurobiol Dis ; 157: 105431, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153465

RESUMO

Microglial cells support brain homeostasis under physiological conditions and modulate brain injury in a context-dependent and brain maturation-dependent manner. Microglial cells protect neonatal brain from acute stroke. While microglial signaling via direct cell-cell interaction and release of variety of molecules is intensely studied, less is known about microglial signaling via release and uptake of extracellular vesicles (EVs). We asked whether neonatal stroke alters release of microglial EVs (MEV) and MEV communication with activated microglia. We pulled down and plated microglia from ischemic-reperfused and contralateral cortex 24 h after transient middle cerebral artery occlusion (tMCAO) in postnatal day 9 mice, isolated and characterized microglia-derived microvesicles (P3-MEV) and exosomes (P4-MEV), and determined uptake of fluorescently labeled P3-MEV and P4-MEV by plated microglia derived from ischemic-reperfused and contralateral cortex. We then examined how reducing EVs release in neonatal brain-by intra-cortical injection of CRISPR-Cas9-Smpd3/KO (Smpd3/KD) to downregulate Smpd3 gene to disrupt neutral sphingomyelinase-2 (N-SMase2)-impacts P3-MEV and P4-MEV release and stroke injury. Both size and protein composition differed between P3-MEV and P4-MEV. tMCAO further altered protein composition of P3-MEV and P4-MEV and significantly, up to 5-fold, increased uptake of both vesicle subtypes by microglia from ischemic-reperfused regions. Under physiological conditions neurons were the predominant cell type expressing N-SMase-2, an enzyme involved in lipid signaling and EVs release. After tMCAO N-SMase-2 expression was diminished in injured neurons but increased in activated microglia/macrophages, leading to overall reduced N-SMase-2 activity. Compared to intracerebral injection of control plasmid, CRISPR-Cas9-Smpd3/Ct, Smpd3/KD injection further reduced N-SMase-2 activity and significantly reduced injury. Smpd3 downregulation decreased MEV release from injured regions, reduced Smpd3/KD-P3-MEV uptake and abolished Smpd3/KD-P4-MEV uptake by microglia from ischemic-reperfused region. Cumulatively, these data demonstrate that microglial cells release both microvesicles and exosomes in naïve neonatal brain, that the state of microglial activation determines both properties of released EVs and their recognition/uptake by microglia in ischemic-reperfused and control regions, suggesting a modulatory role of MEV in neonatal stroke, and that sphingosine/N-SMase-2 signaling contributes both to EVs release and uptake (predominantly P4-MEV) after neonatal stroke.


Assuntos
Encéfalo/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Microglia/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Ativação de Macrófagos , Camundongos , Transdução de Sinais , Esfingomielina Fosfodiesterase/genética , Acidente Vascular Cerebral/metabolismo
6.
J Neurosci ; 40(19): 3849-3861, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32269105

RESUMO

Neonatal stroke is as frequent as stroke in the elderly, but many pathophysiological injury aspects are distinct in neonates, including immune signaling. While myeloid cells can traffic into the brain via multiple routes, the choroid plexus (CP) has been identified as a uniquely educated gate for immune cell traffic during health and disease. To understand the mechanisms of myeloid cell trafficking via the CP and their influence on neonatal stroke, we characterized the phenotypes of CP-infiltrating myeloid cells after transient middle cerebral artery occlusion (tMCAO) in neonatal mice of both sexes in relation to blood-brain barrier permeability, injury, microglial activation, and CX3CR1-CCR2 signaling, focusing on the dynamics early after reperfusion. We demonstrate rapid recruitment of multiple myeloid phenotypes in the CP ipsilateral to the injury, including inflammatory CD45+CD11b+Ly6chighCD86+, beneficial CD45+CD11b+Ly6clowCD206+, and CD45+CD11b+Ly6clowLy6ghigh cells, but only minor leukocyte infiltration into acutely ischemic-reperfused cortex and negligible vascular albumin leakage. We report that CX3CR1-CCR2-mediated myeloid cell recruitment contributes to stroke injury. Considering the complexity of inflammatory cascades triggered by stroke and a role for TLR2 in injury, we also used direct TLR2 stimulation as an independent injury model. TLR2 agonist rapidly recruited myeloid cells to the CP, increased leukocytosis in the CSF and blood, but infiltration into the cortex remained low over time. While the magnitude and the phenotypes of myeloid cells diverged between tMCAO and TLR2 stimulation, in both models, disruption of CX3CR1-CCR2 signaling attenuated both monocyte and neutrophil trafficking to the CP and cortex.SIGNIFICANCE STATEMENT Stroke during the neonatal period leads to long-term disabilities. The mechanisms of ischemic injury and inflammatory response differ greatly between the immature and adult brain. We examined leukocyte trafficking via the choroid plexus (CP) following neonatal stroke in relation to blood-brain barrier integrity, injury, microglial activation, and signaling via CX3CR1 and CCR2 receptors, or following direct TLR2 stimulation. Ischemia-reperfusion triggered marked unilateral CX3CR1-CCR2 dependent accumulation of diverse leukocyte subpopulations in the CP without inducing extravascular albumin leakage or major leukocyte infiltration into the brain. Disrupted CX3CR1-CCR2 signaling was neuroprotective in part by attenuating monocyte and neutrophil trafficking. Understanding the migratory patterns of CP-infiltrating myeloid cells with intact and disrupted CX3CR1-CCR2 signaling could identify novel therapeutic targets to protect the neonatal brain.


Assuntos
Quimiotaxia de Leucócito/fisiologia , Plexo Corióideo/metabolismo , Células Mieloides/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Animais , Animais Recém-Nascidos , Receptor 1 de Quimiocina CX3C/metabolismo , Plexo Corióideo/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Receptores CCR2/metabolismo , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo
7.
Med Sci (Paris) ; 35(11): 859-865, 2019 Nov.
Artigo em Francês | MEDLINE | ID: mdl-31845877

RESUMO

Alcohol consumption during pregnancy constitutes a major cause of neurodevelopmental and behavioral disabilities. Whereas it is possible for clinicians to establish a perinatal diagnosis of fetal alcohol syndrome, the more severe expression of fetal alcohol spectrum disorder (FASD), most FASD children are late or mis-diagnosed due to a lack of clear morphological and neurodevelopmental abnormalities. Several precious years of care are consequently lost. Recent data revealed a functional placenta-brain axis involved in the control of the fetal brain angiogenesis which is impaired by in utero alcohol exposure. Because in the developing fetal brain a correct angiogenesis is required for a correct neurodevelopment, these preclinical and clinical advances pave the way for a new generation of placental biomarkers for early diagnosis of FASD.


TITLE: Alcoolisation fœtale - Le placenta au secours du diagnostic précoce des troubles du développement cérébral de l'enfant. ABSTRACT: La consommation d'alcool au cours de la grossesse constitue une cause majeure de troubles du comportement et de handicap. Alors qu'il est possible pour un clinicien d'établir un diagnostic néonatal du syndrome d'alcoolisation fœtale, l'atteinte la plus sévère des troubles causés par l'alcoolisation fœtale (TCAF), une grande majorité des enfants échappe à un diagnostic précoce en raison de l'absence d'anomalies morphologiques évidentes. Plusieurs années de prise en charge sont alors perdues. Des avancées récentes ont permis d'établir l'existence d'un axe fonctionnel placenta-cerveau impliqué dans le contrôle de l'angiogenèse cérébrale, qui se trouve dérégulé chez les enfants exposés in utero à l'alcool. Une angiogenèse cérébrale normale étant un prérequis à l'établissement d'un neurodéveloppement correct, ces avancées ouvrent la voie à l'identification d'une nouvelle génération de biomarqueurs placentaires d'atteinte cérébrale pour le diagnostic précoce des enfants TCAF.


Assuntos
Encefalopatias/diagnóstico , Transtornos do Espectro Alcoólico Fetal/diagnóstico , Placenta , Animais , Encefalopatias/etiologia , Diagnóstico Precoce , Feminino , Humanos , Recém-Nascido , Neovascularização Fisiológica , Placenta/metabolismo , Gravidez
8.
Acta Neuropathol Commun ; 6(1): 109, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340542

RESUMO

Extreme microcephaly and rhombencephalosynapsis represent unusual pathological conditions, each of which occurs in isolation or in association with various other cerebral and or extracerebral anomalies. Unlike microcephaly for which several disease-causing genes have been identified with different modes of inheritance, the molecular bases of rhombencephalosynapsis remain unknown and rhombencephalosynapsis presents mainly as a sporadic condition consistent with de novo dominant variations. We report for the first time the association of extreme microcephaly with almost no sulcation and rhombencephalosynapsis in a fœtus for which comparative patient-parent exome sequencing strategy revealed a heterozygous de novo missense variant in the ADGRL2 gene. ADGRL2 encodes latrophilin 2, an adhesion G-protein-coupled receptor whose exogenous ligand is α-latrotoxin. Adgrl2 immunohistochemistry and in situ hybridization revealed expression in the telencephalon, mesencephalon and rhombencephalon of mouse and chicken embryos. In human brain embryos and fœtuses, Adgrl2 immunoreactivity was observed in the hemispheric and cerebellar germinal zones, the cortical plate, basal ganglia, pons and cerebellar cortex. Microfluorimetry experiments evaluating intracellular calcium release in response to α-latrotoxin binding showed significantly reduced cytosolic calcium release in the fœtus amniocytes vs amniocytes from age-matched control fœtuses and in HeLa cells transfected with mutant ADGRL2 cDNA vs wild-type construct. Embryonic lethality was also observed in constitutive Adgrl2-/- mice. In Adgrl2+/- mice, MRI studies revealed microcephaly and vermis hypoplasia. Cell adhesion and wound healing assays demonstrated that the variation increased cell adhesion properties and reduced cell motility. Furthermore, HeLa cells overexpressing mutant ADGRL2 displayed a highly developed cytoplasmic F-actin network related to cytoskeletal dynamic modulation. ADGRL2 is the first gene identified as being responsible for extreme microcephaly with rhombencephalosynapsis. Increased cell adhesion, reduced cell motility and cytoskeletal dynamic alterations induced by the variant therefore represent a new mechanism responsible for microcephaly.


Assuntos
Microcefalia/genética , Microcefalia/patologia , Mutação/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Rombencéfalo/patologia , Adulto , Animais , Ciclo Celular/genética , Células Cultivadas , Embrião de Galinha , Análise Mutacional de DNA , Embrião de Mamíferos , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento/genética , Idade Gestacional , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcefalia/complicações , Microcefalia/diagnóstico por imagem , Pessoa de Meia-Idade , Neuroglia/metabolismo , Neuroglia/patologia , Rombencéfalo/diagnóstico por imagem
9.
J Neuropathol Exp Neurol ; 76(10): 883-897, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922852

RESUMO

Magnesium sulfate (MgSO4) administration to mothers at risk of preterm delivery is proposed as a neuroprotective strategy against neurological alterations such as cerebral palsy in newborns. However, long-term beneficial or adverse effects of MgSO4 and sex-specific sensitivity remain to be investigated. We conducted behavioral and neurochemical studies of MgSO4 effects in males and females, from the perinatal period to adolescence in a mouse model of cerebral neonatal lesion. The lesion was produced in 5-day-old (P5) pups by ibotenate intracortical injection. MgSO4 (600 mg/kg, i.p.) prior to ibotenate prevented lesion-induced sensorimotor alterations in both sexes at P6 and P7. The lesion increased glutamate level at P10 in the prefrontal cortex, which was prevented by MgSO4 in males. In neonatally lesioned adolescent mice, males exhibited more sequelae than females in motor and cognitive functions. In the perirhinal cortex of adolescent mice, the neonatal lesion induced an increase in vesicular glutamate transporter 1 density in males only, which was negatively correlated with cognitive scores. Long-term sequelae were prevented by neonatal MgSO4 administration. MgSO4 never induced short- or long-term deleterious effect on its own. These results also strongly suggest that sex-specific neuroprotection should be foreseen in preterm infants.


Assuntos
Encéfalo/metabolismo , Bloqueadores dos Canais de Cálcio/administração & dosagem , Transtornos Neurológicos da Marcha/prevenção & controle , Sulfato de Magnésio/administração & dosagem , Síndromes Neurotóxicas/complicações , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Bloqueadores dos Canais de Cálcio/sangue , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Lateralidade Funcional , Transtornos Neurológicos da Marcha/etiologia , Ácido Glutâmico/metabolismo , Ácido Ibotênico/toxicidade , Estudos Longitudinais , Sulfato de Magnésio/sangue , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Fatores Sexuais , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Pharmacol Res Perspect ; 5(4)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28805973

RESUMO

Clinical studies showed beneficial effects of magnesium sulfate regarding the risk of cerebral palsy. However, regimen protocols fluctuate worldwide and risks of adverse effects impacting the vascular system have been reported for human neonates, keeping open the question of the optimal dosing. Using clinically relevant concentrations and doses of magnesium sulfate, experiments consisted of characterizing, respectively, ex vivo and in vivo, the effects of magnesium sulfate on the nervous and vascular systems of mouse neonates by targeting neuroprotection, angiogenesis, and hemodynamic factors and in measuring, in human fetuses, the impact of a 4-g neuroprotective loading dose of magnesium sulfate on brain hemodynamic parameters. Preclinical experiments using cultured cortical slices from mouse neonates showed that the lowest and highest tested concentrations of magnesium sulfate were equally potent to prevent excitotoxic-induced cell death, cell edema, cell burst, and intracellular calcium increase, whereas no side effects were found regarding apoptosis. In contrast, in vivo data revealed that magnesium sulfate exerted dose-dependent vascular effects on the fetal brain. In particular, it induced brain hypoperfusion, stabilization of Hif-1α, long-term upregulation of VEGF-R2 expression, impaired endothelial viability, and altered cortical angiogenesis. Clinically, in contrast to 6-g loading doses used in some protocols, a 4-g bolus of magnesium sulfate did not altered fetal brain hemodynamic parameters. In conclusion, these data provide the first mechanistic evidence of double-sword and dose-dependent actions of magnesium sulfate on nervous and vascular systems. They strongly support the clinical use of neuroprotection protocols validated for the lowest (4-g) loading dose of magnesium sulfate.

11.
Acta Neuropathol Commun ; 5(1): 44, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587682

RESUMO

Most children with in utero alcohol exposure do not exhibit all features of fetal alcohol syndrome (FAS), and a challenge for clinicians is to make an early diagnosis of fetal alcohol spectrum disorders (FASD) to avoid lost opportunities for care. In brain, correct neurodevelopment requires proper angiogenesis. Since alcohol alters brain angiogenesis and the placenta is a major source of angiogenic factors, we hypothesized that it is involved in alcohol-induced brain vascular defects. In mouse, using in vivo repression and overexpression of PLGF, we investigated the contribution of placenta on fetal brain angiogenesis. In human, we performed a comparative molecular and morphological analysis of brain/placenta angiogenesis in alcohol-exposed fetuses. Results showed that prenatal alcohol exposure impairs placental angiogenesis, reduces PLGF levels and consequently alters fetal brain vasculature. Placental repression of PLGF altered brain VEGF-R1 expression and mimicked alcohol-induced vascular defects in the cortex. Over-expression of placental PGF rescued alcohol effects on fetal brain vessels. In human, alcohol exposure disrupted both placental and brain angiogenesis. PLGF expression was strongly decreased and angiogenesis defects observed in the fetal brain markedly correlated with placental vascular impairments. Placental PGF disruption impairs brain angiogenesis and likely predicts brain disabilities after in utero alcohol exposure. PLGF assay at birth could contribute to the early diagnosis of FASD.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/metabolismo , Fator de Crescimento Placentário/metabolismo , Placenta/efeitos dos fármacos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Encéfalo/patologia , Modelos Animais de Doenças , Etanol/toxicidade , Feminino , Humanos , Camundongos , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/embriologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Placenta/irrigação sanguínea , Placenta/metabolismo , Placenta/patologia , Fator de Crescimento Placentário/genética , Gravidez , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Arthritis Res Ther ; 17: 382, 2015 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-26714738

RESUMO

BACKGROUND: B and T cells play a key role in rheumatoid arthritis (RA) pathophysiology. RasGRP1 and RasGRP3 are involved in T and B cell receptors signaling, and belong to gene combination able to predict infliximab responsiveness, leading to the question of RasGRP1 and RasGRP3 involvement in RA. METHODS: RasGRP1 and RasGRP3 expression levels were measured by qRT-PCR and/or western-blot in peripheral blood mononuclear cells (PBMCs), in T and B cells from untreated RA patients and in RA patients treated by TNFα inhibitors. T and B cells from healthy controls (HC) were cultured with TNFα, and TNFα receptors neutralizing antibodies to highlight the TNFα effects on RasGRP1 and RasGRP3 pathways. MAPK pathways and apoptosis were respectively analyzed using the Proteome Profiler arrays and flow cytometry. RESULTS: In PBMCs from RA patients, gene expression levels of RasGRP1 were invariant while RasGRP3 was downregulated under TNFα inhibitors and upregulated under TNFα. In T cells from RA patients, RasGRP1 was decreased and its gene expression level was correlated with disease activity. In T cells from HC, TNFα stimulation increased RasGRP1 gene expression level while it reduced RasGRP1 protein expression level. Bryostatin-1 experiments have confirmed that the TNFα effect observed on T cells proliferation was due to the decrease of RasGRP1 expression. Besides, RasGRP3 expression level increased in PBMCs from RA patients under TNFα and in B cells from HC leading us to conclude that RasGRP3 in B cells was modulated by TNFα. CONCLUSION: This study demonstrates RasGRP1 dysregulation in RA patients while RasGRP3 is characterized as a biomarker linked to TNFα inhibitors. After binding to TNFR1, TNFα reduced RasGRP1 protein expression resulting in inhibition of T cell activation. TRIAL REGISTRATION: Clinicaltrials.gov NCT00234234 , registered 04 November 2008; NCT00767325 , registered 05 October 2005.


Assuntos
Artrite Reumatoide/sangue , Proteínas de Ligação a DNA/sangue , Fatores de Troca do Nucleotídeo Guanina/sangue , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Adalimumab/farmacologia , Adalimumab/uso terapêutico , Adulto , Idoso , Artrite Reumatoide/tratamento farmacológico , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Biomarcadores/sangue , Células Cultivadas , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Adulto Jovem , Fatores ras de Troca de Nucleotídeo Guanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA