Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 666: 31-39, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930285

RESUMO

A gentle optical examination of the mitochondrial permeability transition pore (mPTP) opening events was carried out in isolated quiescent ventricular myocytes by tracking the inner membrane potential (ΔΨM) using TMRM (tetramethylrhodamine methyl ester). Zeiss Airyscan 880 ″super-resolution" or "high-resolution" imaging was done with very low levels of illumination (0.009% laser power). In cellular areas imaged every 9 s (ROI or regions of interest), transient depolarizations of variable amplitudes occurred at increasing rates for the first 30 min. The time to first depolarization events was 8.4 min (±1.1 SEM n = 21 cells). At longer times, essentially permanent and irreversible depolarizations occurred at an increasing fraction of all events. In other cellular areas surrounding the ROI, mitochondria were rarely illuminated (once per 5 min) and virtually no permanent depolarization events occurred for over 1 h of imaging. These findings suggest that photon stress due to the imaging itself plays an important role in the generation of both the transient mPTP opening events as well as the permanent mPTP opening events. Consistent with the evidence that photon "stress" in mitochondria loaded with virtually any photon absorbing substance, generates reactive oxygen species (ROS) [1-5], we show that cyclosporine-A (CsA, 10 µM) and the antioxidant n-acetyl cysteine (NAC, 10 mM), reduced the number of events by 80% and 93% respectively. Furthermore, CsA and NAC treatment led to the virtual disappearance of permanent depolarization events. Nevertheless, all transient depolarization events in any condition (control, CsA and NAC) appeared to repolarize with a similar half-time of 30 ±â€¯6 s (n = 478) at 37 °C. Further experiments showed quantitatively similar results in cerebral vascular smooth muscle cells, using a different confocal system, and different photon absorbing reagent (TMRE; tetramethylrhodamine ethyl ester). In these experiments, using modest power (1% laser power) transient depolarization events were seen in only 8 out of 23 cells while with higher power (8%), all cells showed transient events, which align with the level of photon stress being the driver of the effect. Together, our findings suggest that photon-induced ROS is sufficient to cause depolarization events of individual mitochondria in quiescent cells; without electrical or mechanical activity to stimulates mitochondrial metabolism, and without raising the mitochondrial matrix Ca2+. In a broad context, these findings neither support nor deny the relevance or occurrence of ΔΨM depolarization events in specific putatively physiologic mitochondrial behaviors such as MitoFlashes [6,7] or MitoWinks [8]. Instead, our findings raise a caution with regards to the physiological and pathophysiological functions attributed to singular ΔΨM depolarization events when those functions are investigated using photon absorbing substances. Nevertheless, using photon stress as a tool ("Optical Stress-Probe"), we can extract information on the activation, reversibility, permanency and kinetics of mitochondrial depolarization. These data may provide new information on mPTP, help identify the mPTP protein complex, and establish the physiological function of the mPTP protein complex and their links to MitoFlashes and MitoWinks.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Sprague-Dawley
4.
J Mol Cell Cardiol ; 92: 82-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26827896

RESUMO

Calcium-induced calcium release is the principal mechanism that triggers the cell-wide [Ca(2+)]i transient that activates muscle contraction during cardiac excitation-contraction coupling (ECC). Here, we characterize this process in mouse cardiac myocytes with a novel mathematical action potential (AP) model that incorporates realistic stochastic gating of voltage-dependent L-type calcium (Ca(2+)) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (the ryanodine receptors, RyR2s). Depolarization of the sarcolemma during an AP stochastically activates the LCCs elevating subspace [Ca(2+)] within each of the cell's 20,000 independent calcium release units (CRUs) to trigger local RyR2 opening and initiate Ca(2+) sparks, the fundamental unit of triggered Ca(2+) release. Synchronization of Ca(2+) sparks during systole depends on the nearly uniform cellular activation of LCCs and the likelihood of local LCC openings triggering local Ca(2+) sparks (ECC fidelity). The detailed design and true SR Ca(2+) pump/leak balance displayed by our model permits investigation of ECC fidelity and Ca(2+) spark fidelity, the balance between visible (Ca(2+) spark) and invisible (Ca(2+) quark/sub-spark) SR Ca(2+) release events. Excess SR Ca(2+) leak is examined as a disease mechanism in the context of "catecholaminergic polymorphic ventricular tachycardia (CPVT)", a Ca(2+)-dependent arrhythmia. We find that that RyR2s (and therefore Ca(2+) sparks) are relatively insensitive to LCC openings across a wide range of membrane potentials; and that key differences exist between Ca(2+) sparks evoked during quiescence, diastole, and systole. The enhanced RyR2 [Ca(2+)]i sensitivity during CPVT leads to increased Ca(2+) spark fidelity resulting in asynchronous systolic Ca(2+) spark activity. It also produces increased diastolic SR Ca(2+) leak with some prolonged Ca(2+) sparks that at times become "metastable" and fail to efficiently terminate. There is a huge margin of safety for stable Ca(2+) handling within the cell and this novel mechanistic model provides insight into the molecular signaling characteristics that help maintain overall Ca(2+) stability even under the conditions of high SR Ca(2+) leak during CPVT. Finally, this model should provide tools for investigators to examine normal and pathological Ca(2+) signaling characteristics in the heart.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio/genética , Cálcio/metabolismo , Acoplamento Excitação-Contração/genética , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Potenciais de Ação/genética , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Humanos , Camundongos , Modelos Teóricos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sarcolema/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/patologia
5.
PLoS Comput Biol ; 11(11): e1004521, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26545234

RESUMO

In the heart, electrical stimulation of cardiac myocytes increases the open probability of sarcolemmal voltage-sensitive Ca2+ channels and flux of Ca2+ into the cells. This increases Ca2+ binding to ligand-gated channels known as ryanodine receptors (RyR2). Their openings cause cell-wide release of Ca2+, which in turn causes muscle contraction and the generation of the mechanical force required to pump blood. In resting myocytes, RyR2s can also open spontaneously giving rise to spatially-confined Ca2+ release events known as "sparks." RyR2s are organized in a lattice to form clusters in the junctional sarcoplasmic reticulum membrane. Our recent work has shown that the spatial arrangement of RyR2s within clusters strongly influences the frequency of Ca2+ sparks. We showed that the probability of a Ca2+ spark occurring when a single RyR2 in the cluster opens spontaneously can be predicted from the precise spatial arrangements of the RyR2s. Thus, "function" follows from "structure." This probability is related to the maximum eigenvalue (λ1) of the adjacency matrix of the RyR2 cluster lattice. In this work, we develop a theoretical framework for understanding this relationship. We present a stochastic contact network model of the Ca2+ spark initiation process. We show that λ1 determines a stability threshold for the formation of Ca2+ sparks in terms of the RyR2 gating transition rates. We recapitulate these results by applying the model to realistic RyR2 cluster structures informed by super-resolution stimulated emission depletion (STED) microscopy. Eigendecomposition of the linearized mean-field contact network model reveals functional subdomains within RyR2 clusters with distinct sensitivities to Ca2+. This work provides novel perspectives on the cardiac Ca2+ release process and a general method for inferring the functional properties of transmembrane receptor clusters from their structure.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/química , Camundongos , Modelos Biológicos , Contração Miocárdica/fisiologia , Biologia de Sistemas
6.
Proc Natl Acad Sci U S A ; 112(41): E5618-27, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26424448

RESUMO

Cardiac pacemaking is governed by specialized cardiomyocytes located in the sinoatrial node (SAN). SAN cells (SANCs) integrate voltage-gated currents from channels on the membrane surface (membrane clock) with rhythmic Ca(2+) release from internal Ca(2+) stores (Ca(2+) clock) to adjust heart rate to meet hemodynamic demand. Here, we report that stromal interaction molecule 1 (STIM1) and Orai1 channels, key components of store-operated Ca(2+) entry, are selectively expressed in SANCs. Cardiac-specific deletion of STIM1 in mice resulted in depletion of sarcoplasmic reticulum (SR) Ca(2+) stores of SANCs and led to SAN dysfunction, as was evident by a reduction in heart rate, sinus arrest, and an exaggerated autonomic response to cholinergic signaling. Moreover, STIM1 influenced SAN function by regulating ionic fluxes in SANCs, including activation of a store-operated Ca(2+) current, a reduction in L-type Ca(2+) current, and enhancing the activities of Na(+)/Ca(2+) exchanger. In conclusion, these studies reveal that STIM1 is a multifunctional regulator of Ca(2+) dynamics in SANCs that links SR Ca(2+) store content with electrical events occurring in the plasma membrane, thereby contributing to automaticity of the SAN.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Proteína ORAI1 , Retículo Sarcoplasmático/genética , Nó Sinoatrial/citologia , Molécula 1 de Interação Estromal
7.
Proc Natl Acad Sci U S A ; 112(34): E4792-801, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261328

RESUMO

In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca(2+) sensor, is unclear with respect to its cellular localization, its Ca(2+)-dependent mobilization, and its action on Ca(2+) signaling. Confocal microscopy was used to measure Ca(2+) signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca(2+) using thapsigargin (2-10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca(2+) depletion. Additionally, we found no store-operated Ca(2+) entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca(2+) content and increased SR Ca(2+) leak. These changes in Ca(2+) signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca(2+) ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca(2+) leak and that these actions are independent of store-operated Ca(2+) entry, a process that is absent in normal heart cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Glicoproteínas de Membrana/fisiologia , Retículo Sarcoplasmático/metabolismo , Animais , Ratos , Molécula 1 de Interação Estromal
9.
Sci Adv ; 1(1)2015.
Artigo em Inglês | MEDLINE | ID: mdl-25839057

RESUMO

The beating heart exhibits remarkable contractile fidelity over a lifetime, which reflects the tight coupling of electrical, chemical, and mechanical elements within the sarcomere, the elementary contractile unit. On a beat-to-beat basis, calcium is released from the ends of the sarcomere and must diffuse toward the sarcomere center to fully activate the myosin- and actin-based contractile proteins. The resultant spatial and temporal gradient in free calcium across the sarcomere should lead to nonuniform and inefficient activation of contraction. We show that myosin-binding protein C (MyBP-C), through its positioning on the myosin thick filaments, corrects this nonuniformity in calcium activation by exquisitely sensitizing the contractile apparatus to calcium in a manner that precisely counterbalances the calcium gradient. Thus, the presence and correct localization of MyBP-C within the sarcomere is critically important for normal cardiac function, and any disturbance of MyBP-C localization or function will contribute to the consequent cardiac pathologies.

10.
Biophys J ; 107(12): 3018-3029, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25517166

RESUMO

Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca(2+)) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca(2+) from the sarcoplasmic reticulum (SR). The Ca(2+) leak out of the SR is an important process for cellular Ca(2+) management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca(2+) spark. Here, we present a detailed, three-dimensional model of a cardiac Ca(2+) release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca(2+) sparks and robust Ca(2+) spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca(2+) spark and nonspark-based SR Ca(2+) leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca(2+)-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca(2+) leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca(2+) spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca(2+) release properties due to variations in inter-RyR coupling via local subspace Ca(2+) concentration ([Ca(2+)]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions.


Assuntos
Sinalização do Cálcio , Modelos Neurológicos , Miocárdio/metabolismo , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(26): 10479-86, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23759742

RESUMO

Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo
12.
J Mol Cell Cardiol ; 59: 205-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23538132

RESUMO

The free Ca(2+) concentration within the mitochondrial matrix ([Ca(2+)]m) regulates the rate of ATP production and other [Ca(2+)]m sensitive processes. It is set by the balance between total Ca(2+) influx (through the mitochondrial Ca(2+) uniporter (MCU) and any other influx pathways) and the total Ca(2+) efflux (by the mitochondrial Na(+)/Ca(2+) exchanger and any other efflux pathways). Here we review and analyze the experimental evidence reported over the past 40years which suggest that in the heart and many other mammalian tissues a putative Na(+)/Ca(2+) exchanger is the major pathway for Ca(2+) efflux from the mitochondrial matrix. We discuss those reports with respect to a recent discovery that the protein product of the human FLJ22233 gene mediates such Na(+)/Ca(2+) exchange across the mitochondrial inner membrane. Among its many functional similarities to other Na(+)/Ca(2+) exchanger proteins is a unique feature: it efficiently mediates Li(+)/Ca(2+) exchange (as well as Na(+)/Ca(2+) exchange) and was therefore named NCLX. The discovery of NCLX provides both the identity of a novel protein and new molecular means of studying various unresolved quantitative aspects of mitochondrial Ca(2+) movement out of the matrix. Quantitative and qualitative features of NCLX are discussed as is the controversy regarding the stoichiometry of the NCLX Na(+)/Ca(2+) exchange, the electrogenicity of NCLX, the [Na(+)]i dependency of NCLX and the magnitude of NCLX Ca(2+) efflux. Metabolic features attributable to NCLX and the physiological implication of the Ca(2+) efflux rate via NCLX during systole and diastole are also briefly discussed.


Assuntos
Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Biologia Computacional , Humanos
13.
J Mol Cell Cardiol ; 58: 172-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23220288

RESUMO

X-ROS signaling is a novel redox signaling pathway that links mechanical stress to changes in [Ca(2+)]i. This pathway is activated rapidly and locally within a muscle cell under physiological conditions, but can also contribute to Ca(2+)-dependent arrhythmia in the heart and to the dystrophic phenotype in the heart and skeletal muscle. Upon physiologic cellular stretch, microtubules serve as mechanotransducers to activate NADPH oxidase 2 in the transverse tubules and sarcolemmal membranes to produce reactive oxygen species (ROS). In the heart, the ROS acts locally to activate ryanodine receptor Ca(2+) release channels in the junctional sarcoplasmic reticulum, increasing the Ca(2+) spark rate and "tuning" excitation-contraction coupling. In the skeletal muscle, where Ca(2+) sparks are not normally observed, the X-ROS signaling process is muted. However in muscular dystrophies, such as Duchenne Muscular Dystrophy and dysferlinopathy, X-ROS signaling operates at a high level and contributes to myopathy. Importantly, Ca(2+) permeable stretch-activated channels are activated by X-ROS and contribute to skeletal muscle pathology. Here we review X-ROS signaling and mechanotransduction in striated muscle, and highlight important questions to drive future work on stretch-dependent signaling. We conclude that X-ROS provides an exciting mechanism for the mechanical control of redox and Ca(2+) signaling, but much work is needed to establish its contribution to physiologic and pathophysiologic processes in diverse cell systems.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Humanos , Músculo Esquelético/patologia , Miócitos Cardíacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
14.
J Mol Cell Cardiol ; 52(2): 304-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21767546

RESUMO

Evidence obtained in recent years indicates that, in cardiac myocytes, release of Ca(2+) from the sarcoplasmic reticulum (SR) is regulated by changes in the concentration of Ca(2+) within the SR. In this review, we summarize recent advances in our understanding of this regulatory role, with a particular emphasis on dynamic and local changes in SR [Ca(2+)]. We focus on five important questions that are to some extent unresolved and controversial. These questions concern: (1) the importance of SR [Ca(2+)] depletion in the termination of Ca(2+) release; (2) the quantitative extent of depletion during local release events such as Ca(2+) sparks; (3) the influence of SR [Ca(2+)] refilling on release refractoriness and the propensity for pathological Ca(2+) release; (4) dynamic changes in SR [Ca(2+)] during propagating Ca(2+) waves; and (5) the speed of Ca(2+) diffusion within the SR. With each issue, we discuss data supporting alternative viewpoints, and we identify fundamental questions that are being actively investigated. We conclude with a discussion of experimental and computational advances that will help to resolve controversies. This article is part of a special issue entitled "Local Signaling in Myocytes."


Assuntos
Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio , Humanos , Miócitos Cardíacos/metabolismo
16.
Science ; 333(6048): 1440-5, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21903813

RESUMO

We report that in heart cells, physiologic stretch rapidly activates reduced-form nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) to produce reactive oxygen species (ROS) in a process dependent on microtubules (X-ROS signaling). ROS production occurs in the sarcolemmal and t-tubule membranes where NOX2 is located and sensitizes nearby ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR). This triggers a burst of Ca(2+) sparks, the elementary Ca(2+) release events in heart. Although this stretch-dependent "tuning" of RyRs increases Ca(2+) signaling sensitivity in healthy cardiomyocytes, in disease it enables Ca(2+) sparks to trigger arrhythmogenic Ca(2+) waves. In the mouse model of Duchenne muscular dystrophy, hyperactive X-ROS signaling contributes to cardiomyopathy through aberrant Ca(2+) release from the SR. X-ROS signaling thus provides a mechanistic explanation for the mechanotransduction of Ca(2+) release in the heart and offers fresh therapeutic possibilities.


Assuntos
Mecanotransdução Celular , Glicoproteínas de Membrana/metabolismo , Miócitos Cardíacos/fisiologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Estimulação Elétrica , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microtúbulos/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/fisiopatologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , Oxirredução , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
17.
Biophys J ; 101(6): 1287-96, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21943409

RESUMO

We present what we believe to be a new mathematical model of Ca(2+) leak from the sarcoplasmic reticulum (SR) in the heart. To our knowledge, it is the first to incorporate a realistic number of Ca(2+)-release units, each containing a cluster of stochastically gating Ca(2+) channels (RyRs), whose biophysical properties (e.g., Ca(2+) sensitivity and allosteric interactions) are informed by the latest molecular investigations. This realistic model allows for the detailed characterization of RyR Ca(2+)-release properties, and shows how this balances reuptake by the SR Ca(2+) pump. Simulations reveal that SR Ca(2+) leak consists of brief but frequent single RyR openings (~3000 cell(-1) s(-1)) that are likely to be experimentally undetectable, and are, therefore, "invisible". We also observe that these single RyR openings can recruit additional RyRs to open, due to elevated local (Ca(2+)), and occasionally lead to the generation of Ca(2+) sparks (~130 cell(-1) s(-1)). Furthermore, this physiological formulation of "invisible" leak allows for the removal of the ad hoc, non-RyR mediated Ca(2+) leak terms present in prior models. Finally, our model shows how Ca(2+) sparks can be robustly triggered and terminated under both normal and pathological conditions. Together, these discoveries profoundly influence how we interpret and understand diverse experimental and clinical results from both normal and diseased hearts.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Regulação Alostérica , Cardiopatias/metabolismo , Cardiopatias/patologia , Miócitos Cardíacos/patologia , Permeabilidade , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
20.
Biophys J ; 98(10): 2111-20, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20483318

RESUMO

Diastolic Ca leak from the sarcoplasmic reticulum (SR) of ventricular myocytes reduces the SR Ca content, stabilizing the activity of the SR Ca release channel ryanodine receptor for the next beat. SR Ca leak has been visualized globally using whole-cell fluorescence, or locally using confocal microscopy, but never both ways. When using confocal microscopy, leak is imaged as "Ca sparks," which are fluorescent objects generated by the local reaction-diffusion of released Ca and cytosolic indicator. Here, we used confocal microscopy and simultaneously measured the global ryanodine-receptor-mediated leak rate (J(leak)) and Ca sparks in intact mouse ventricular myocytes. We found that spark frequency and J(leak) are correlated, as expected if both are manifestations of a common phenomenon. However, we also found that sparks explain approximately half of J(leak). Our strategy unmasks the presence of a subresolution (i.e., nonspark) release of potential physiological relevance.


Assuntos
Potenciais de Ação/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/fisiologia , Ventrículos do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Retículo Sarcoplasmático/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Citosol/efeitos dos fármacos , Citosol/metabolismo , Diástole/efeitos dos fármacos , Diástole/fisiologia , Ventrículos do Coração/fisiopatologia , Ativação do Canal Iônico , Camundongos , Microscopia Confocal , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Disfunção Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA