Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 10: 556650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194621

RESUMO

BACKGROUND: To evaluate the role of epithelial splicing regulatory protein 1 (ESRP1) expression in survival prognoses and disease progression for prostate cancer (PC) using The Cancer Genome Atlas (TCGA) dataset and to validate it using patients' prostatectomy specimens. METHODS: A preliminary investigation into the clinical significance of ESRP1 in PC was conducted using TCGA PC PRAD dataset and then using immunohistochemistry in 514 PC patients' tissue microarrays of radical prostatectomy specimens. The interpretation of immunohistochemistry was done using its intensity (high vs. low) or the semi-quantitative expression value (H-score, 0-300). The prognostic significance of ESRP1 expression was analyzed for biochemical recurrence (BCR), recurrence-free survival (RFS), overall survival (OS) and cancer-specific survival (CSS) using the Cox proportional-hazards model (p < 0.05). RESULTS: In the publicly available prostate adenocarcinoma dataset, ESRP1 expression was significantly higher in the tumor samples compared to the normal samples (p < 0.001). Survival analysis showed that the tumor samples in the ESRP1-high group had significantly worse BCR-free survival and RFS compared to the ESRP1-low group (p < 0.05), whereas OS was not (p=0.08). These results were largely consistent with the 514 patients' clinical data during a median 91.2 months of follow-up. After adjusting for significant prognostic clinicopathological factors, the multivariable models showed that the ESRP1 was a significantly risk factor for CSS (Hazard ratio 3.37, p = 0.034) and for BCR (HR 1.34, p=0.049) without any significance for OS (p=0.464). CONCLUSIONS: The higher ESRP1 expression appeared increased risk of disease progression and cancer-specific death in PC.

2.
JMIR Ment Health ; 7(9): e19476, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960185

RESUMO

BACKGROUND: There is considerable scientific interest in finding new and innovative ways to capture rapid fluctuations in functioning within individuals with bipolar disorder (BD), a severe, recurrent mental disorder associated with frequent shifts in symptoms and functioning. The use of smartphones can provide valid and real-world tools for use in measurement-based care and could be used to inform more personalized treatment options for this group, which can improve standard of care. OBJECTIVE: We examined the feasibility and usability of a smartphone to capture daily fluctuations in mood within BD and to relate daily self-rated mood to smartphone use behaviors indicative of psychomotor activity or symptoms of the illness. METHODS: Participants were 26 individuals with BD and 12 healthy control individuals who were recruited from the Prechter Longitudinal Study of BD. All were given a smartphone with a custom-built app and prompted twice a day to complete questions of mood for 28 days. The app automatically and unobtrusively collected phone usage data. A poststudy satisfaction survey was also completed. RESULTS: Our sample showed a very high adherence rate to the daily momentary assessments (91% of the 58 prompts completed). Multivariate mixed effect models showed that an increase in rapid thoughts over time was associated with a decrease in outgoing text messages (ß=-.02; P=.04), and an increase in impulsivity self-ratings was related to a decrease in total call duration (ß=-.29; P=.02). Participants generally reported positive experiences using the smartphone and completing daily prompts. CONCLUSIONS: Use of mobile technology shows promise as a way to collect important clinical information that can be used to inform treatment decision making and monitor outcomes in a manner that is not overly burdensome to the patient or providers, highlighting its potential use in measurement-based care.

3.
Genome Med ; 11(1): 81, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847917

RESUMO

BACKGROUND: Accurate identification of real somatic variants is a primary part of cancer genome studies and precision oncology. However, artifacts introduced in various steps of sequencing obfuscate confidence in variant calling. Current computational approaches to variant filtering involve intensive interrogation of Binary Alignment Map (BAM) files and require massive computing power, data storage, and manual labor. Recently, mutational signatures associated with sequencing artifacts have been extracted by the Pan-cancer Analysis of Whole Genomes (PCAWG) study. These spectrums can be used to evaluate refinement quality of a given set of somatic mutations. RESULTS: Here we introduce a novel variant refinement software, FIREVAT (FInding REliable Variants without ArTifacts), which uses known spectrums of sequencing artifacts extracted from one of the largest publicly available catalogs of human tumor samples. FIREVAT performs a quick and efficient variant refinement that accurately removes artifacts and greatly improves the precision and specificity of somatic calls. We validated FIREVAT refinement performance using orthogonal sequencing datasets totaling 384 tumor samples with respect to ground truth. Our novel method achieved the highest level of performance compared to existing filtering approaches. Application of FIREVAT on additional 308 The Cancer Genome Atlas (TCGA) samples demonstrated that FIREVAT refinement leads to identification of more biologically and clinically relevant mutational signatures as well as enrichment of sequence contexts associated with experimental errors. FIREVAT only requires a Variant Call Format file (VCF) and generates a comprehensive report of the variant refinement processes and outcomes for the user. CONCLUSIONS: In summary, FIREVAT facilitates a novel refinement strategy using mutational signatures to distinguish artifactual point mutations called in human cancer samples. We anticipate that FIREVAT results will further contribute to precision oncology efforts that rely on accurate identification of variants, especially in the context of analyzing mutational signatures that bear prognostic and therapeutic significance. FIREVAT is freely available at https://github.com/cgab-ncc/FIREVAT.


Assuntos
Neoplasias/genética , Software , Algoritmos , Variação Genética , Humanos , Neoplasias/patologia
4.
Stat Biosci ; 11(2): 355-370, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31462937

RESUMO

There is a growing interest in leveraging the prevalence of mobile technology to improve health by delivering momentary, contextualized interventions to individuals' smartphones. A just-in-time adaptive intervention (JITAI) adjusts to an individual's changing state and/or context to provide the right treatment, at the right time, in the right place. Micro-randomized trials (MRTs) allow for the collection of data which aid in the construction of an optimized JITAI by sequentially randomizing participants to different treatment options at each of many decision points throughout the study. Often, this data is collected passively using a mobile phone. To assess the causal effect of treatment on a near-term outcome, care must be taken when designing the data collection system to ensure it is of appropriately high quality. Here, we make several recommendations for collecting and managing data from an MRT. We provide advice on selecting which features to collect and when, choosing between "agents" to implement randomization, identifying sources of missing data, and overcoming other novel challenges. The recommendations are informed by our experience with HeartSteps, an MRT designed to test the effects of an intervention aimed at increasing physical activity in sedentary adults. We also provide a checklist which can be used in designing a data collection system so that scientists can focus more on their questions of interest, and less on cleaning data.

5.
Nucleic Acids Res ; 46(W1): W102-W108, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29790943

RESUMO

Somatic genome mutations occur due to combinations of various intrinsic/extrinsic mutational processes and DNA repair mechanisms. Different molecular processes frequently generate different signatures of somatic mutations in their own favored contexts. As a result, the regional somatic mutation rate is dependent on the local DNA sequence, the DNA replication/RNA transcription dynamics and epigenomic chromatin organization landscape in the genome. Here, we propose an online computational framework, termed Mutalisk, which correlates somatic mutations with various genomic, transcriptional and epigenomic features in order to understand mutational processes that contribute to the generation of the mutations. This user-friendly tool explores the presence of localized hypermutations (kataegis), dissects the spectrum of mutations into the maximum likelihood combination of known mutational signatures and associates the mutation density with numerous regulatory elements in the genome. As a result, global patterns of somatic mutations in any query sample can be efficiently screened, thus enabling a deeper understanding of various mutagenic factors. This tool will facilitate more effective downstream analyses of cancer genome sequences to elucidate the diversity of mutational processes underlying the development and clonal evolution of cancer cells. Mutalisk is freely available at http://mutalisk.org.


Assuntos
Epigenômica , Internet , Mutação/genética , Software , Biologia Computacional/tendências , Genoma Humano/genética , Genômica/tendências , Humanos , Mutagênese/genética , Mutagênicos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA