Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331404

RESUMO

The electrochemical reduction of CO2 in acidic media offers the advantage of high carbon utilization, but achieving high selectivity to C2+ products at a low overpotential remains a challenge. We identified the chemical instability of oxide-derived Cu catalysts as a reason that advances in neutral/alkaline electrolysis do not translate to acidic conditions. In acid, Cu ions leach from Cu oxides, leading to the deactivation of the C2+-active sites of Cu nanoparticles. This prompted us to design acid-stable Cu cluster precatalysts that are reduced in situ to active Cu nanoparticles in strong acid. Operando Raman and X-ray spectroscopy indicated that the bonding between the Cu cluster precatalyst ligand and in situ formed Cu nanoparticles preserves a high density of undercoordinated Cu sites, resulting in a C2H4 Faradaic efficiency of 62% at a low overpotential. The result is a 1.4-fold increase in energy efficiency compared with previous acidic CO2-to-C2+ electrocatalytic systems.

2.
Nanoscale ; 16(26): 12329-12344, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38860477

RESUMO

Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.

3.
J Am Chem Soc ; 146(18): 12556-12564, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38660792

RESUMO

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

4.
Nat Commun ; 15(1): 2995, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582773

RESUMO

Improving the kinetics and selectivity of CO2/CO electroreduction to valuable multi-carbon products is a challenge for science and is a requirement for practical relevance. Here we develop a thiol-modified surface ligand strategy that promotes electrochemical CO-to-acetate. We explore a picture wherein nucleophilic interaction between the lone pairs of sulfur and the empty orbitals of reaction intermediates contributes to making the acetate pathway more energetically accessible. Density functional theory calculations and Raman spectroscopy suggest a mechanism where the nucleophilic interaction increases the sp2 hybridization of CO(ad), facilitating the rate-determining step, CO* to (CHO)*. We find that the ligands stabilize the (HOOC-CH2)* intermediate, a key intermediate in the acetate pathway. In-situ Raman spectroscopy shows shifts in C-O, Cu-C, and C-S vibrational frequencies that agree with a picture of surface ligand-intermediate interactions. A Faradaic efficiency of 70% is obtained on optimized thiol-capped Cu catalysts, with onset potentials 100 mV lower than in the case of reference Cu catalysts.

5.
Nat Mater ; 23(4): 552-559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316979

RESUMO

Developing active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal-support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO2, ZnO and CeO2, containing various catalytically active transition metals, including Pt, Ir and Cu. The optimized Pt-DSA/TiO2 shows unprecedentedly high photocatalytic hydrogen evolution activity, producing 164 mmol g-1 h-1 with a turnover frequency of 1.27 s-1. Furthermore, it generates 42.2 mmol gsub-1 of hydrogen via a non-recyclable-plastic-photoreforming process, achieving a total conversion of 98%; this offers a promising solution for mitigating plastic waste and simultaneously producing valuable energy sources.

6.
Pathol Res Pract ; 253: 155035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171080

RESUMO

The present study aimed to investigate the clinicopathological and prognostic implications of the cribriform pattern in lung adenocarcinoma through a meta-analysis. The estimated rates of cribriform pattern in lung adenocarcinomas were investigated. The correlations between cribriform pattern and clinicopathological characteristics, including genetic alterations and prognosis were evaluated. The estimated rate of cribriform pattern was 0.150 (95% confidence interval [CI], 0.101-0.218) in lung adenocarcinoma. The estimated rates of cribriform pattern in the 5% and 10% criteria were 0.230 (95% CI 0.125-0.386) and 0.130 (95% CI 0.062-0.252), respectively. The presence of cribriform pattern was significantly correlated with larger tumor size (> 30 mm), spread through air spaces, and lymph node metastasis (P < 0.001, P < 0.001, and P = 0.007, respectively, in the meta-regression test). There were no significant differences between cribriform pattern, smoking history, and vascular and lymphatic invasion. In lung adenocarcinoma with cribriform pattern, the estimated rates of ALK rearrangement, KRAS, and EGFR mutations were 0.407 (95% CI 0.165-0.704), 0.330 (95% CI 0.117-0.646), and 0.249 (95% CI 0.125-0.437), respectively. ALK rearrangement was significantly more frequent in lung adenocarcinomas with cribriform pattern than in those without. The overall survival rate was significantly worse in lung adenocarcinomas with a cribriform pattern than in those without (hazard ratio 2.051, 95% CI 1.369-3.075). In conclusion, the presence of a cribriform pattern can be a useful predictor of the clinicopathological characteristics and prognosis of patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Prognóstico , Mutação , Receptores Proteína Tirosina Quinases/genética , Estadiamento de Neoplasias
7.
Nat Nanotechnol ; 19(3): 311-318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37996517

RESUMO

The electrochemical reduction of CO2 in acidic conditions enables high single-pass carbon efficiency. However, the competing hydrogen evolution reaction reduces selectivity in the electrochemical reduction of CO2, a reaction in which the formation of CO, and its ensuing coupling, are each essential to achieving multicarbon (C2+) product formation. These two reactions rely on distinct catalyst properties that are difficult to achieve in a single catalyst. Here we report decoupling the CO2-to-C2+ reaction into two steps, CO2-to-CO and CO-to-C2+, by deploying two distinct catalyst layers operating in tandem to achieve the desired transformation. The first catalyst, atomically dispersed cobalt phthalocyanine, reduces CO2 to CO with high selectivity. This process increases local CO availability to enhance the C-C coupling step implemented on the second catalyst layer, which is a Cu nanocatalyst with a Cu-ionomer interface. The optimized tandem electrodes achieve 61% C2H4 Faradaic efficiency and 82% C2+ Faradaic efficiency at 800 mA cm-2 at 25 °C. When optimized for single-pass utilization, the system reaches a single-pass carbon efficiency of 90 ± 3%, simultaneous with 55 ± 3% C2H4 Faradaic efficiency and a total C2+ Faradaic efficiency of 76 ± 2%, at 800 mA cm-2 with a CO2 flow rate of 2 ml min-1.

8.
ACS Macro Lett ; 12(11): 1569-1575, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37931088

RESUMO

A clear understanding of the structure-property relationship of intrinsically stretchable polymer semiconductors (ISPSs) is essential for developing high-performance polymer-based electronics. Herein, we investigate the effect of the fluorination position on the crystalline structure, charge-carrier mobility, and stretchability of polymer semiconductors based on a benzodithiophene-co-benzotriazole configuration. Although four different polymer semiconductors showed similar field-effect mobilities for holes (µ ≈ 0.1 cm2 V-1 s-1), polymer semiconductors with nonfluorinated backbones exhibited improved thin-film stretchability confirmed with crack onset strain (εc ≈ 20%-50%) over those of fluorinated counterparts (εc ≤ 10%). The enhanced stretchability of polymer semiconductors with a nonfluorinated backbone is presumably due to the higher face-on crystallite ratio and π-π stacking distance in the out-of-plane direction than those of the other polymer semiconductors. These results provide new insights into how the thin-film stretchability of polymer semiconductors can be improved by using precise molecular tailoring without deteriorating electrical properties.

9.
ACS Nano ; 17(21): 21470-21479, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37847158

RESUMO

Single-atom photocatalysis has shown potential in various single-step organic transformations, but its use in multistep organic transformations in one reaction systems has rarely been achieved. Herein, we demonstrate atomic site orthogonality in the M1/C3N4 system (where M = Pd or Ni), enabling a cascade photoredox reaction involving oxidative and reductive reactions in a single system. The system utilizes visible-light-generated holes and electrons from C3N4, driving redox reactions (e.g., oxidation and fluorination) at the surface of C3N4 and facilitating cross-coupling reactions (e.g., C-C and C-O bond formation) at the metal site. The concept is generalized to different systems of Pd and Ni, thus making the catalytic site-orthogonal M1/C3N4 system an ideal photocatalyst for improving the efficiency and selectivity of multistep organic transformations.

10.
Adv Mater ; 35(52): e2306092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739451

RESUMO

Conversion of sunlight and organic carbon substrates to sustainable energy sources through microbial metabolism has great potential for the renewable energy industry. Despite recent progress in microbial photosynthesis, the development of microbial platforms that warrant efficient and scalable fuel production remains in its infancy. Efficient transfer and retrieval of gaseous reactants and products to and from microbes are particular hurdles. Here, inspired by water lily leaves floating on water, a microbial device designed to operate at the air-water interface and facilitate concomitant supply of gaseous reactants, smooth capture of gaseous products, and efficient sunlight delivery is presented. The floatable device carrying Rhodopseudomonas parapalustris, of which nitrogen fixation activity is first determined through this study, exhibits a hydrogen production rate of 104 mmol h-1  m-2 , which is 53 times higher than that of a conventional device placed at a depth of 2 cm in the medium. Furthermore, a scaled-up device with an area of 144 cm2 generates hydrogen at a high rate of 1.52 L h-1  m-2 . Efficient nitrogen fixation and hydrogen generation, low fabrication cost, and mechanical durability corroborate the potential of the floatable microbial device toward practical and sustainable solar energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA