Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760179

RESUMO

OBJECTIVE: Prior studies on models based on deep learning (DL) and measuring the cardiothoracic ratio (CTR) on chest radiographs have lacked rigorous agreement analyses with radiologists or reader tests. We validated the performance of a commercially available DL-based CTR measurement model with various thoracic pathologies, and performed agreement analyses with thoracic radiologists and reader tests using a probabilistic-based reference. MATERIALS AND METHODS: This study included 160 posteroanterior view chest radiographs (no lung or pleural abnormalities, pneumothorax, pleural effusion, consolidation, and n = 40 in each category) to externally test a DL-based CTR measurement model. To assess the agreement between the model and experts, intraclass or interclass correlation coefficients (ICCs) were compared between the model and two thoracic radiologists. In the reader tests with a probabilistic-based reference standard (Dawid-Skene consensus), we compared diagnostic measures-including sensitivity and negative predictive value (NPV)-for cardiomegaly between the model and five other radiologists using the non-inferiority test. RESULTS: For the 160 chest radiographs, the model measured a median CTR of 0.521 (interquartile range, 0.446-0.59) and a mean CTR of 0.522 ± 0.095. The ICC between the two thoracic radiologists and between the model and two thoracic radiologists was not significantly different (0.972 versus 0.959, p = 0.192), even across various pathologies (all p-values > 0.05). The model showed non-inferior diagnostic performance, including sensitivity (96.3% versus 97.8%) and NPV (95.6% versus 97.4%) (p < 0.001 in both), compared with the radiologists for all 160 chest radiographs. However, it showed inferior sensitivity in chest radiographs with consolidation (95.5% versus 99.9%; p = 0.082) and NPV in chest radiographs with pleural effusion (92.9% versus 94.6%; p = 0.079) and consolidation (94.1% versus 98.7%; p = 0.173). CONCLUSION: While the sensitivity and NPV of this model for diagnosing cardiomegaly in chest radiographs with consolidation or pleural effusion were not as high as those of the radiologists, it demonstrated good agreement with the thoracic radiologists in measuring the CTR across various pathologies.

2.
Sci Rep ; 13(1): 11576, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463941

RESUMO

The phantom array effect is one of the temporal light artefacts that can decrease performance and increase fatigue. The phantom array effect visibility shows large individual differences; however, the dominant factors that can explain these individual differences remain unclear. We investigated the relationship between saccadic eye movement speed and phantom array visibility at two different angles and four different directions of saccadic eye movement. The peak speed of saccadic eye movement and the phantom array effect visibility were measured at different modulation frequencies of the light source. Our results show that phantom array visibility increased as eye movement speed increased; the phantom array visibility was higher at a wide viewing angle with fast eye movement speed than at a narrow viewing angle. Moreover, when clustered into subgroups according to individual eye movement speed, the mean speed of the saccadic eye movement of each subgroup is related to the variations in the visibility of the phantom array effect of the subgroup. Therefore, saccadic eye movement speed is related to variations in phantom array effect visibility.


Assuntos
Movimentos Oculares , Movimentos Sacádicos , Humanos , Fadiga
3.
Sensors (Basel) ; 22(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36298328

RESUMO

COVID-19 has infected millions of people worldwide over the past few years. The main technique used for COVID-19 detection is reverse transcription, which is expensive, sensitive, and requires medical expertise. X-ray imaging is an alternative and more accessible technique. This study aimed to improve detection accuracy to create a computer-aided diagnostic tool. Combining other artificial intelligence applications techniques with radiological imaging can help detect different diseases. This study proposes a technique for the automatic detection of COVID-19 and other chest-related diseases using digital chest X-ray images of suspected patients by applying transfer learning (TL) algorithms. For this purpose, two balanced datasets, Dataset-1 and Dataset-2, were created by combining four public databases and collecting images from recently published articles. Dataset-1 consisted of 6000 chest X-ray images with 1500 for each class. Dataset-2 consisted of 7200 images with 1200 for each class. To train and test the model, TL with nine pretrained convolutional neural networks (CNNs) was used with augmentation as a preprocessing method. The network was trained to classify using five classifiers: two-class classifier (normal and COVID-19); three-class classifier (normal, COVID-19, and viral pneumonia), four-class classifier (normal, viral pneumonia, COVID-19, and tuberculosis (Tb)), five-class classifier (normal, bacterial pneumonia, COVID-19, Tb, and pneumothorax), and six-class classifier (normal, bacterial pneumonia, COVID-19, viral pneumonia, Tb, and pneumothorax). For two, three, four, five, and six classes, our model achieved a maximum accuracy of 99.83, 98.11, 97.00, 94.66, and 87.29%, respectively.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia Bacteriana , Pneumonia Viral , Pneumotórax , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Inteligência Artificial
4.
Sensors (Basel) ; 22(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808358

RESUMO

Walking is an exercise that uses muscles and joints of the human body and is essential for understanding body condition. Analyzing body movements through gait has been studied and applied in human identification, sports science, and medicine. This study investigated a spatiotemporal graph convolutional network model (ST-GCN), using attention techniques applied to pathological-gait classification from the collected skeletal information. The focus of this study was twofold. The first objective was extracting spatiotemporal features from skeletal information presented by joint connections and applying these features to graph convolutional neural networks. The second objective was developing an attention mechanism for spatiotemporal graph convolutional neural networks, to focus on important joints in the current gait. This model establishes a pathological-gait-classification system for diagnosing sarcopenia. Experiments on three datasets, namely NTU RGB+D, pathological gait of GIST, and multimodal-gait symmetry (MMGS), validate that the proposed model outperforms existing models in gait classification.


Assuntos
Algoritmos , Redes Neurais de Computação , Marcha , Humanos
5.
Skeletal Radiol ; 51(5): 1007-1016, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34595544

RESUMO

OBJECTIVES: To develop and evaluate a deep learning (DL)-based system for measuring leg length on full leg radiographs of diverse patients, including those with orthopedic hardware implanted for surgical treatment. METHODS: This study retrospectively assessed 2767 X-ray scanograms of 2767 patients who did or did not have orthopedic hardware implanted between January 2016 and December 2019. A cascaded DL model was developed to localize the relevant landmarks on the pelvis, knees, and ankles required for measuring leg length. Statistical analysis was performed using the correlation coefficient analysis and Bland-Altman plots to assess the agreement between the reference standard and DL-calculated lengths. RESULTS: Testing data comprised 400 radiographs from 400 patients. Of these radiographs, 100 were from patients with orthopedic hardware implanted in their pelvis, knees, or ankles. For all testing data, leg lengths derived from the DL-based measurement system, with or without internal fixation devices, showed excellent agreement with the reference standard (femoral length, r = 0.99 (P < .001); root mean square error (RMSE) = 0.17 cm; mean difference, - 0.01 ± 0.17 cm; 95% limit of agreement (LoA), - 0.35 to 0.34; tibial length, r = 0.99 (P < .001); RMSE = 0.17 cm; mean difference, - 0.02 ± 0.17 cm, 95% LoA, - 0.34 to 0.31; and full leg length, r = 1.0 (P < .001); RMSE = 0.19 cm; mean difference, 0.05 ± 0.18 cm; 95% LoA, - 0.31 to 0.40). The mean time for leg length measurement for each patient using the DL-based system was 8.68 ± 0.18 s. CONCLUSION: The DL-based leg length measurement system could provide similar performance to radiologists in terms of accuracy and reliability for a diverse group of patients.


Assuntos
Computadores , Perna (Membro) , Humanos , Perna (Membro)/diagnóstico por imagem , Radiografia , Reprodutibilidade dos Testes , Estudos Retrospectivos
6.
IEEE Trans Pattern Anal Mach Intell ; 31(3): 520-38, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19147879

RESUMO

We present a framework for monocular 3D kinematic pose tracking and viewpoint estimation of periodic and quasi-periodic human motions from an uncalibrated camera. The approach we introduce here is based on learning both the visual observation manifold and the kinematic manifold of the motion using a joint representation. We show that the visual manifold of the observed shape of a human performing a periodic motion, observed from different viewpoints, is topologically equivalent to a torus manifold. The approach we introduce here is based on the supervised learning of both the visual and kinematic manifolds. Instead of learning an embedding of the manifold, we learn the geometric deformation between an ideal manifold (conceptual equivalent topological structure) and a twisted version of the manifold (the data). Experimental results show accurate estimation of the 3D body posture and the viewpoint from a single uncalibrated camera.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Movimento , Reconhecimento Automatizado de Padrão/métodos , Postura , Imagem Corporal Total/métodos , Inteligência Artificial , Humanos , Aumento da Imagem/métodos , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA