Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20669, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450849

RESUMO

Obesity has become a major risk factor for developing metabolic diseases, including insulin resistance, type 2 diabetes, and hypertension. Growing pieces of evidence indicate that the Wnt/ß-catenin signaling pathway plays an important role in adipogenesis and obesity. Activation of the Wnt/ß-catenin signaling pathway inhibits adipogenesis by suppressing the differentiation of committed preadipocytes into mature adipocytes. CXXC5 is highly induced with suppression of Wnt/ß-catenin signaling in early adipogenic differentiation. In addition, silencing CXXC5 in vitro increased ß-catenin and decremented the major adipogenic differentiation markers. KY19334, a small molecule that activates the Wnt/ß-catenin pathway via inhibition of CXXC5- Dishevelled (Dvl) protein-protein interaction (PPI), suppressed adipogenic differentiation. Administration of KY19334 ameliorated obesity by 26 ± 1.3% and insulin resistance by 23.45 ± 7.09% and reduced adipocyte hypertrophy by 80.87 ± 5.30% in high-fat diet (HFD)-fed mice. In addition, KY19334 accelerated the browning of adipose tissue and promoted hepatic glucose homeostasis in HFD-fed mice. In conclusion, activation of the Wnt/ß-catenin signaling by inhibiting the interaction of CXXC5 and Dvl by small molecule-mediated interference is a potential therapeutic approach for treating obesity and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Adipogenia , beta Catenina , Obesidade/tratamento farmacológico , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA