Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Exp Mol Med ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866910

RESUMO

Neoantigens are ideal targets for cancer immunotherapy because they are expressed de novo in tumor tissue but not in healthy tissue and are therefore recognized as foreign by the immune system. Advances in next-generation sequencing and bioinformatics technologies have enabled the quick identification and prediction of tumor-specific neoantigens; however, only a small fraction of predicted neoantigens are immunogenic. To improve the predictability of immunogenic neoantigens, we developed the in silico neoantigen prediction workflows VACINUSpMHC and VACINUSTCR: VACINUSpMHC incorporates physical binding between peptides and MHCs (pMHCs), and VACINUSTCR integrates T cell reactivity to the pMHC complex through deep learning-based pairing with T cell receptors (TCRs) of putative tumor-reactive CD8 tumor-infiltrating lymphocytes (TILs). We then validated our neoantigen prediction workflows both in vitro and in vivo in patients with hepatocellular carcinoma (HCC) and in a B16F10 mouse melanoma model. The predictive abilities of VACINUSpMHC and VACINUSTCR were confirmed in a validation cohort of 8 patients with HCC. Of a total of 118 neoantigen candidates predicted by VACINUSpMHC, 48 peptides were ultimately selected using VACINUSTCR. In vitro validation revealed that among the 48 predicted neoantigen candidates, 13 peptides were immunogenic. Assessment of the antitumor efficacy of the candidate neoepitopes using a VACINUSTCR in vivo mouse model suggested that vaccination with the predicted neoepitopes induced neoantigen-specific T cell responses and enabled the trafficking of neoantigen-specific CD8 + T cell clones into the tumor tissue, leading to tumor suppression. This study showed that the prediction of immunogenic neoantigens can be improved by integrating a tumor-reactive TIL TCR-pMHC ternary complex.

2.
Kidney Int ; 105(5): 997-1019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320721

RESUMO

Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.


Assuntos
Aminoacil-tRNA Sintetases , Nefrite Intersticial , Insuficiência Renal , Animais , Humanos , Camundongos , Aminoacil-tRNA Sintetases/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células , Fibrose , Proteínas de Homeodomínio , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/genética , Nefrite Intersticial/tratamento farmacológico
3.
Front Cell Dev Biol ; 11: 1219739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799276

RESUMO

The clinical application of mesenchymal stem cells (MSCs) is attracting attention due to their excellent safety, convenient acquisition, multipotency, and trophic activity. The clinical effectiveness of transplanted MSCs is well-known in regenerative and immunomodulatory medicine, but there is a demand for their improved viability and regenerative function after transplantation. In this study, we isolated MSCs from adipose tissue from three human donors and generated uniformly sized MSC spheroids (∼100 µm in diameter) called microblocks (MiBs) for dermal reconstitution. The viability and MSC marker expression of MSCs in MiBs were similar to those of monolayer MSCs. Compared with monolayer MSCs, MiBs produced more extracellular matrix (ECM) components, including type I collagen, fibronectin, and hyaluronic acid, and growth factors such as vascular endothelial growth factor and hepatocyte growth factor. Subcutaneously injected MiBs showed skin volume retaining capacity in mice. These results indicate that MiBs could be applied as regenerative medicine for skin conditions such as atrophic scar by having high ECM and bioactive factor expression.

4.
J Extracell Vesicles ; 12(8): e12357, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563797

RESUMO

Despite the capability of extracellular vesicles (EVs) derived from Gram-negative and Gram-positive bacteria to induce potent anti-tumour responses, large-scale production of bacterial EVs remains as a hurdle for their development as novel cancer immunotherapeutic agents. Here, we developed manufacturing processes for mass production of Escherichia coli EVs, namely, outer membrane vesicles (OMVs). By combining metal precipitation and size-exclusion chromatography, we isolated 357 mg in total protein amount of E. coli OMVs, which was equivalent to 3.93 × 1015 particles (1.10 × 1010 particles/µg in total protein amounts of OMVs) from 160 L of the conditioned medium. We show that these mass-produced E. coli OMVs led to complete remission of two mouse syngeneic tumour models. Further analysis of tumour microenvironment in neoantigen-expressing tumour models revealed that E. coli OMV treatment causes increased infiltration and activation of CD8+ T cells, especially those of cancer antigen-specific CD8+ T cells with high expression of TCF-1 and PD-1. Furthermore, E. coli OMVs showed synergistic anti-tumour activity with anti-PD-1 antibody immunotherapy, inducing substantial tumour growth inhibition and infiltration of activated cancer antigen-specific stem-like CD8+ T cells into the tumour microenvironment. These data highlight the potent anti-tumour activities of mass-produced E. coli OMVs as a novel candidate for developing next-generation cancer immunotherapeutic agents.


Assuntos
Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Escherichia coli/metabolismo , Vesículas Extracelulares/química , Membrana Externa Bacteriana/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias/terapia , Neoplasias/metabolismo
5.
Angew Chem Int Ed Engl ; 62(18): e202300978, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827625

RESUMO

Modulating target proteins via the ubiquitin-proteasome system has recently expanded the scope of pharmacological inventions. Stimulator of interferon genes (STING) is an auspicious target for immunotherapy. Seminal studies envisioned the importance of STING as well as the utility of its agonists in immunotherapy outcomes. Herein, we suggest UPPRIS (upregulation of target proteins by protein-protein interaction strategy) to pharmacologically increase cellular STING levels for improved immunotherapy. We discovered the small molecule SB24011 that inhibits STING-TRIM29 E3 ligase interaction, thus blocking TRIM29-induced degradation of STING. SB24011 enhanced STING immunity by upregulating STING protein levels, which robustly potentiated the immunotherapy efficacy of STING agonist and anti-PD-1 antibody via systemic anticancer immunity. Overall, we demonstrated that targeted protein upregulation of STING can be a promising approach for immuno-oncology.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Regulação para Cima , Proteínas de Membrana/metabolismo , Neoplasias/terapia , Ativação Transcricional , Imunoterapia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
6.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717184

RESUMO

BACKGROUND: Oncolytic virus immunotherapy has revolutionized cancer immunotherapy by efficiently inducing both oncolysis and systemic immune activation. Locoregional administration has been used for oncolytic virus therapy, but its applications to deep-seated cancers have been limited. Although systemic delivery of the oncolytic virus would maximize viral immunotherapy's potential, this remains a hurdle due to the rapid removal of the administered virus by the complement and innate immune system. Infected cells produce some vaccinia viruses as extracellular enveloped virions, which evade complement attack and achieve longer survival by expressing host complement regulatory proteins (CRPs) on the host-derived envelope. Here, we generated SJ-600 series oncolytic vaccinia viruses that can mimic complement-resistant extracellular enveloped virions by incorporating human CRP CD55 on the intracellular mature virion (IMV) membrane. METHODS: The N-terminus of the human CD55 protein was fused to the transmembrane domains of the six type I membrane proteins of the IMV; the resulting recombinant viruses were named SJ-600 series viruses. The SJ-600 series viruses also expressed human granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate dendritic cells. The viral thymidine kinase (J2R) gene was replaced by genes encoding the CD55 fusion proteins and GM-CSF. RESULTS: SJ-600 series viruses expressing human CD55 on the IMV membrane showed resistance to serum virus neutralization. SJ-607 virus, which showed the highest CD55 expression and the highest resistance to serum complement-mediated lysis, exhibited superior anticancer activity in three human cancer xenograft models, compared with the control Pexa-Vec (JX-594) virus, after single-dose intravenous administration. The SJ-607 virus administration elicited neutralizing antibody formation in two immunocompetent mouse strains like the control JX-594 virus. Remarkably, we found that the SJ-607 virus evades neutralization by vaccinia virus-specific antibodies. CONCLUSION: Our new oncolytic vaccinia virus platform, which expresses human CD55 protein on its membrane, prolonged viral survival by protecting against complement-mediated lysis and by evading neutralization by vaccinia virus-specific antibodies; this may provide a continuous antitumor efficacy until a complete remission has been achieved. Such a platform may expand the target cancer profile to include deep-seated cancers and widespread metastatic cancers.


Assuntos
Neoplasias , Vírus Oncolíticos , Humanos , Camundongos , Animais , Vaccinia virus/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias/terapia , Neoplasias/patologia , Administração Intravenosa
8.
Adv Sci (Weinh) ; 9(28): e2203842, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058002

RESUMO

Tertiary lymphoid structures (TLSs) provide specialized niches for immune cells, resulting in improved prognoses for patients undergoing cancer immunotherapy. Shaping TLS-like niches may improve anti-cancer immunity and overcome the current limitations of immune cell-based immunotherapy. Here, it is shown that stromal vascular fraction (SVF) from adipose tissues can enhance dendritic cell (DC)-mediated T cell immunity by inducing ectopic T lymphocyte clusters. SVF cells expanded ex vivo have phenotypes and functions similar to those of fibroblastic reticular cells in a secondary lymphoid organ, and their properties can be modulated using three-dimensional spheroid culture and coculture with DCs spiked with antigen-loaded iron oxide-zinc oxide core-shell nanoparticles. Thereby, the combination of SVF spheroids and mature DCs significantly augments T cell recruitment and retention at the injection site. This strategy elicits enhanced antigen-specific immune response and anti-tumoral immunity in mice, illustrating the potential for a novel immunotherapeutic design using SVF as a structural scaffold for TLS.


Assuntos
Estruturas Linfoides Terciárias , Óxido de Zinco , Animais , Células Dendríticas , Imunidade Celular , Imunoterapia/métodos , Camundongos , Fração Vascular Estromal , Linfócitos T
10.
Biomedicines ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453555

RESUMO

Oncolytic virotherapy has garnered attention as an antigen-agnostic therapeutic cancer vaccine that induces cancer-specific T cell responses without additional antigen loading. As anticancer immune responses are compromised by a lack of antigenicity and chronic immunosuppressive microenvironments, an effective immuno-oncology modality that converts cold tumors into hot tumors is crucial. To evaluate the immune-activating characteristics of oncolytic vaccinia virus (VACV; JX-594, pexastimogene devacirepvec), diverse murine syngeneic cancer models with different tissue types and immune microenvironments were used. Intratumorally administered mJX-594, a murine variant of JX-594, potently increased CD8+ T cells, including antigen-specific cancer CD8+ T cells, and decreased immunosuppressive cells irrespective of tissue type or therapeutic efficacy. Remodeling of tumors into inflamed ones by mJX-594 led to a response to combined anti-PD-1 treatment, but not to mJX-594 or anti-PD-1 monotherapy. mJX-594 treatment increased T cell factor 1-positive stem-like T cells among cancer-specific CD8+ T cells, and anti-PD-1 combination treatment further increased proliferation of these cells, which was important for therapeutic efficacy. The presence of functional cancer-specific CD8+ T cells in the spleen and bone marrow for an extended period, which proliferated upon encountering cancer antigen-loaded splenic dendritic cells, further indicated that long-term durable anticancer immunity was elicited by oncolytic VACV.

11.
Front Immunol ; 13: 830433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392102

RESUMO

Background: Despite the fact of ongoing worldwide vaccination programs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding longevity, breadth, and type of immune response to coronavirus disease-19 (COVID-19) is still important to optimize the vaccination strategy and estimate the risk of reinfection. Therefore, we performed thorough immunological assessments 1 year post-COVID-19 with different severity. Methods: We analyzed peripheral blood mononuclear cells and plasma samples at 1 year post-COVID-19 in patients who experienced asymptomatic, mild, and severe illness to assess titers of various isotypes of antibodies (Abs) against SARS-CoV-2 antigens, phagocytic capability, and memory B- and T-cell responses. Findings: A total of 24 patients (7, 9, and 8 asymptomatic, mild, and severe patients, respectively) and eight healthy volunteers were included in this study. We firstly showed that disease severity is correlated with parameters of immune responses at 1 year post-COVID-19 that play an important role in protecting against reinfection with SARS-CoV-2, namely, the phagocytic capacity of Abs and memory B-cell responses. Interpretation: Various immune responses at 1 year post-COVID-19, particularly the phagocytic capacity and memory B-cell responses, were dependent on the severity of the prior COVID-19. Our data could provide a clue for a tailored vaccination strategy after natural infection according to the severity of COVID-19.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunidade , Leucócitos Mononucleares , Reinfecção , SARS-CoV-2 , Índice de Gravidade de Doença
12.
Cell Rep ; 38(8): 110408, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196497

RESUMO

The adipose tissue is a key site regulating energy metabolism. One of the contributing factors behind this is browning of white adipose tissue (WAT). However, knowledge of the intracellular determinants of the browning process remains incomplete. By generating adipocyte-specific Senp2 knockout (Senp2-aKO) mice, here we show that SENP2 negatively regulates browning by de-conjugating small ubiquitin-like modifiers from C/EBPß. Senp2-aKO mice are resistant to diet-induced obesity due to increased energy expenditure and heat production. Senp2 knockout promotes beige adipocyte accumulation in inguinal WAT by upregulation of thermogenic gene expression. In addition, SENP2 knockdown promotes thermogenic adipocyte differentiation of precursor cells isolated from inguinal and epididymal WATs. Mechanistically, sumoylated C/EBPß, a target of SENP2, suppresses expression of HOXC10, a browning inhibitor, by recruiting a transcriptional repressor DAXX. These findings indicate that a SENP2-C/EBPß-HOXC10 axis operates for the control of beige adipogenesis in inguinal WAT.


Assuntos
Adipócitos Bege , Proteína beta Intensificadora de Ligação a CCAAT , Cisteína Endopeptidases , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Adipócitos Bege/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cisteína Endopeptidases/metabolismo , Metabolismo Energético/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Termogênese/genética
13.
Exp Mol Med ; 54(1): 72-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35064188

RESUMO

Increasing evidence has shown that small ubiquitin-like modifier (SUMO) modification plays an important role in metabolic regulation. We previously demonstrated that SUMO-specific protease 2 (SENP2) is involved in lipid metabolism in skeletal muscle and adipogenesis. In this study, we investigated the function of SENP2 in pancreatic ß cells by generating a ß cell-specific knockout (Senp2-ßKO) mouse model. Glucose tolerance and insulin secretion were significantly impaired in the Senp2-ßKO mice. In addition, glucose-stimulated insulin secretion (GSIS) was decreased in the islets of the Senp2-ßKO mice without a significant change in insulin synthesis. Furthermore, islets of the Senp2-ßKO mice exhibited enlarged mitochondria and lower oxygen consumption rates, accompanied by lower levels of S616 phosphorylated DRP1 (an active form of DRP1), a mitochondrial fission protein. Using a cell culture system of NIT-1, an islet ß cell line, we found that increased SUMO2/3 conjugation to DRP1 due to SENP2 deficiency suppresses the phosphorylation of DRP1, which possibly induces mitochondrial dysfunction. In addition, SENP2 overexpression restored GSIS impairment induced by DRP1 knockdown and increased DRP1 phosphorylation. Furthermore, palmitate treatment decreased phosphorylated DRP1 and GSIS in ß cells, which was rescued by SENP2 overexpression. These results suggest that SENP2 regulates mitochondrial function and insulin secretion at least in part by modulating the phosphorylation of DRP1 in pancreatic ß cells.


Assuntos
Células Secretoras de Insulina , Animais , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo
14.
ACS Nano ; 16(2): 3045-3058, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089696

RESUMO

Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging. In addition, its efficient type I photoreaction endows NanoPcM with a superior immunogenic photodynamic therapy (PDT) effect against solid tumors. The combination of NanoPcM-based PDT and αPD-1-based immunotherapy can efficiently inhibit tumor growth, reduce spontaneous lung metastasis, and trigger abscopal effects. This study should provide a perspective for the future design of nanomaterials as promising phototheranostics for cancer imaging and therapy.


Assuntos
Nanoestruturas , Fotoquimioterapia , Albuminas , Linhagem Celular Tumoral , Fluorescência , Imunoterapia , Isoindóis , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
15.
J Clin Invest ; 132(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34752423

RESUMO

Severe glomerular injury ultimately leads to tubulointerstitial fibrosis that determines patient outcome, but the immunological molecules connecting these processes remain undetermined. The present study addressed whether V-domain Ig suppressor of T cell activation (VISTA), constitutively expressed in kidney macrophages, plays a protective role in tubulointerstitial fibrotic transformation after acute antibody-mediated glomerulonephritis. After acute glomerular injury using nephrotoxic serum, tubules in the VISTA-deficient (Vsir-/-) kidney suffered more damage than those in WT kidneys. When interstitial immune cells were examined, the contact frequency of macrophages with infiltrated T cells increased and the immunometabolic features of T cells changed to showing high oxidative phosphorylation and fatty acid metabolism and overproduction of IFN-γ. The Vsir-/- parenchymal tissue cells responded to this altered milieu of interstitial immune cells as more IL-9 was produced, which augmented tubulointerstitial fibrosis. Blocking antibodies against IFN-γ and IL-9 protected the above pathological process in VISTA-depleted conditions. In human samples with acute glomerular injury (e.g., antineutrophil cytoplasmic autoantibody vasculitis), high VISTA expression in tubulointerstitial immune cells was associated with low tubulointerstitial fibrosis and good prognosis. Therefore, VISTA is a sentinel protein expressed in kidney macrophages that prevents tubulointerstitial fibrosis via the IFN-γ/IL-9 axis after acute antibody-mediated glomerular injury.


Assuntos
Injúria Renal Aguda/metabolismo , Antígenos B7/metabolismo , Interferon gama/metabolismo , Interleucina-9/metabolismo , Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Injúria Renal Aguda/genética , Animais , Antígenos B7/genética , Fibrose , Humanos , Interferon gama/genética , Interleucina-9/genética , Glomérulos Renais/lesões , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout
16.
Mol Cells ; 44(9): 637-646, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34511469

RESUMO

Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the ß-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.


Assuntos
Coenzima A Ligases/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células Hep G2 , Humanos , Camundongos , Oxirredução
17.
Adv Exp Med Biol ; 1187: 245-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983582

RESUMO

Cancer stem cells are a subpopulation of cancer cells responsible for the most demanding and aggressive cancer cell phenotypes: therapy resistance, a self-protective feature of stem cells; distant metastasis, requiring anchorage independence for survival in the circulation; and recurrence, which is related to the dormant-active cycling of stem cells. Normal tissues are composed of parenchymal cells, supportive connective components, and cellular disposal systems for removing the products of physiological wear and tear. Cancer stem cells develop from normal counterparts and progressively interact with their microenvironments, modifying and conditioning the cancer microenvironment. Cancer-associated myeloid cells constitute a major element of the cancer microenvironment. During the process of carcinogenesis, cancer stem cells and their intimately associated myeloid cells mutually interact and evolve, such that the cancer cells potentiate the activity of the myeloid cells and, in return, the myeloid cells increase cancer stem cell characteristics. Normal myeloid cells function as key accessory cells to maintain homeostasis in normal tissues and organs; in cancers, these cells co-evolve with the malignant parenchymal cells and are involved in every aspect of cancer cell biology, including proliferation, invasion, distant metastasis, and the development of resistance to therapy. In this way, cancer-associated myeloid cells provide two of the key hallmarks of cancer: evasion of immune destruction and cancer-promoting inflammation.


Assuntos
Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Carcinogênese , Humanos , Células Mieloides , Microambiente Tumoral
18.
Immun Inflamm Dis ; 9(3): 871-882, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33945658

RESUMO

BACKGROUND: Transglutaminase 2 (TG2), a multifunctional calcium-dependent acyltransferase, is upregulated in asthmatic airways and reported to play a role in the pathogenesis of allergic asthma. However, the underlying mechanism is not fully understood. OBJECTIVE: To investigate the role of TG2 in alternative activation of alveolar macrophages by using murine asthma model. METHODS: TG2 expression was assessed in induced sputum of 21 asthma patients and 19 healthy controls, and lung tissue of ovalbumin (OVA)-induced murine asthma model. To evaluate the role of TG2 in asthma, we developed an OVA asthma model in both TG2 null and wild-type mice. The expression of M2 macrophage markers was measured by fluorescence-activated cell sorting (FACS) after OVA sensitization and challenge. To evaluate the effect of TG2 inhibition in vitro, interleukin 4 (IL-4) or IL-13-stimulated expression of M2 macrophage markers was measured in CRL-2456 cells in the presence and absence of a TG2 inhibitor. RESULTS: The expression of both TG2 and M2 markers was increased in the sputum of asthmatics compared with that of healthy controls. The expression of TG2 was increased in macrophages of OVA mice. Airway hyperresponsiveness, and the number of inflammatory cells, including eosinophils, was significantly reduced in TG2 null mice compared with wild-type mice. Enhanced expression of M2 markers in OVA mice was normalized by TG2 knockout. IL-4 or IL-13-stimulated expression of M2 markers in alveolar macrophages was also attenuated by TG2 inhibitor treatment in vitro. CONCLUSION: Our results suggest that TG2-mediated modulation of alveolar macrophage polarization plays important roles in the pathogenesis of asthma.


Assuntos
Asma , Macrófagos Alveolares , Animais , Humanos , Inflamação , Pulmão , Ativação de Macrófagos , Camundongos
19.
J Infect Dis ; 224(1): 39-48, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33755725

RESUMO

BACKGROUND: Understanding the memory T-cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for assessing the longevity of protective immunity after SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination. However, the longitudinal memory T-cell response up to 8 months post-symptom onset (PSO) according to the severity of illness is unknown. METHODS: We analyzed peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with COVID-19 who experienced asymptomatic, mild, or severe illness at 2, 5, and 8 months PSO. SARS-CoV-2 spike, nucleocapsid, and membrane protein-stimulated PBMCs were subjected to flow cytometry analysis. RESULTS: A total of 24 patients (7 asymptomatic, 9 with mild disease, and 8 with severe disease) and 6 healthy volunteers were analyzed. SARS-CoV-2-specific OX40+CD137+CD4+ T cells and CD69+CD137+CD8+ T cells persisted at 8 months PSO. Also, antigen-specific cytokine-producing or polyfunctional CD4+ T cells were maintained for up to 8 months PSO. Memory CD4+ T-cell responses tended to be greater in patients who had severe illness than in those with mild or asymptomatic disease. CONCLUSIONS: Memory response to SARS-CoV-2, based on the frequency and functionality, persists for 8 months PSO. Further investigations involving its longevity and protective effect from reinfection are warranted.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , SARS-CoV-2/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Antígenos Virais , Biomarcadores , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos de Casos e Controles , Citocinas/metabolismo , Gerenciamento Clínico , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunidade Celular , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Avaliação de Sintomas , Subpopulações de Linfócitos T/metabolismo , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649207

RESUMO

Tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) also has an immunological function to suppress T cell activation in inflammatory circumstances, including graft-versus-host disease (GVHD), a fatal complication after allogeneic bone marrow transplantation (allo-BMT). Although the mononuclear cell expression of IDO1 has been associated with improved outcomes in GVHD, the underlying mechanisms remain unclear. Herein, we used IDO-deficient (Ido1-/-) BMT to understand why myeloid IDO limits the severity of GVHD. Hosts with Ido1-/- BM exhibited increased lethality, with enhanced proinflammatory and reduced regulatory T cell responses compared with wild type (WT) allo-BMT controls. Despite the comparable expression of the myeloid-derived suppressor cell (MDSC) mediators, arginase-1, inducible nitric oxide synthase, and interleukin 10, Ido1-/- Gr-1+CD11b+ cells from allo-BMT or in vitro BM culture showed compromised immune-suppressive functions and were skewed toward the Ly6ClowLy6Ghi subset, compared with the WT counterparts. Importantly, Ido1-/-Gr-1+CD11b+ cells exhibited elevated levels of reactive oxygen species (ROS) and neutrophil numbers. These characteristics were rescued by human IDO1 with intact heme-binding and catalytic activities and were recapitulated by the treatment of WT cells with the IDO1 inhibitor L1-methyl tryptophan. ROS scavenging by N-acetylcysteine reverted the Ido1-/-Gr-1+CD11b+ composition and function to an MDSC state, as well as improved the survival of GVHD hosts with Ido1-/- BM. In summary, myeloid-derived IDO1 enhances GVHD survival by regulating ROS levels and limiting the ability of Gr-1+CD11b+ MDSCs to differentiate into proinflammatory neutrophils. Our findings provide a mechanistic insight into the immune-regulatory roles of the metabolic enzyme IDO1.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Células Supressoras Mieloides/imunologia , Espécies Reativas de Oxigênio/imunologia , Aloenxertos , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA