Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 34152-34159, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744798

RESUMO

Vanadium-based catalysts have been commercially used in selective catalytic reduction (SCR), owing to their high catalytic activity and effectiveness across a wide temperature range; however, their catalytic efficiency decreases at lower temperatures under exposure to SOX. This decrease is largely due to ammonium sulfate generation on the catalyst surface. To overcome this limitation, we added ammonium nitrate to the V2O5-WO3/TiO2 catalyst, producing a V2O5-WO3/TiO2 catalyst with nitrate functional groups. With this approach, we found that it was possible to adjust the amount of these functional groups by varying the amount of ammonium nitrate. Overall, the resultant nitrate V2O5-WO3/TiO2 catalyst has large quantities of NO3- and chemisorbed oxygen, which improves the density of Brønsted and Lewis acid sites on the catalyst surface. Furthermore, the nitrated V2O5-WO3/TiO2 catalyst has a high NOX removal efficiency and N2 selectivity at low temperatures (i.e., 300 °C); this is because NO3- and chemisorbed oxygen, generated by nitrate treatment, facilitated the occurrence of a fast SCR reaction. The approach outlined in this study can be applied to a wide range of SCR catalysts, allowing for the development of more, low-temperature SCR catalysts.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558208

RESUMO

Argyrodite solid electrolytes such as lithium phosphorus sulfur chloride (Li6PS5Cl) have recently attracted great attention due to their excellent lithium-ion transport properties, which are applicable to all-solid-state lithium batteries. In this study, we report the improved ionic conductivity of an argyrodite solid electrolyte, Li6PS5Cl, in all-solid-state lithium batteries via the co-doping of chlorine (Cl) and aluminum (Al) elements. Electrochemical analysis was conducted on the doped argyrodite structure of Li6PS5Cl, which revealed that the substitution of cations and anions greatly improved the ionic conductivity of solid electrolytes. The ionic conductivity of the Cl- and Al-doped Li6PS5Cl (Li5.4Al0.1PS4.7Cl1.3) electrolyte was 7.29 × 10-3 S cm-1 at room temperature, which is 4.7 times higher than that of Li6PS5Cl. The Arrhenius plot of the Li5.4Al0.1PS4.7Cl1.3 electrolyte further elucidated its low activation energy at 0.09 eV.

3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362098

RESUMO

We demonstrated highly active and durable hybrid catalysts (HCs) composed of small reduced graphene oxide (srGO) and carbon nanotubes (CNTs) for use as oxygen reduction reaction (ORR) catalysts in proton exchange membrane fuel cells. Pt/srGO and Pt/CNTs were prepared by loading Pt nanoparticles onto srGO and CNTs using a polyol process, and HCs with different Pt/CNT and Pt/srGO ratios were prepared by mechanically mixing the two components. The prepared HCs consisted of Pt/CNTs well dispersed on Pt/srGO, with catalyst HC55, which was prepared using Pt/srGO and Pt/CNTs in a 5:5 ratio, exhibiting excellent oxygen reduction performance and high stability over 1000 cycles of the accelerated durability test (ADT). In particular, after 1000 cycles of the ADT, the normalized electrochemically active surface area of Pt/HC55 decreased by 11.9%, while those of Pt/srGO and Pt/C decreased by 21.2% and 57.6%, respectively. CNTs have strong corrosion resistance because there are fewer defect sites on the surface, and the addition of CNTs in rGO further improved the durability and the electrical conductivity of the catalyst. A detailed analysis of the structural and electrochemical properties of the synthesized catalysts suggested that the synergetic effects of the high specific surface area of srGO and the excellent electrical conductivity of CNTs were responsible for the enhanced efficiency and durability of the catalysts.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Prótons , Platina/química , Oxigênio/química
4.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296834

RESUMO

We demonstrated highly efficient selective catalytic reduction catalysts by adopting the polyol process, and the prepared catalysts exhibited a high nitrogen oxide (NOX) removal efficiency of 96% at 250 °C. The V2O5 and WO3 catalyst nanoparticles prepared using the polyol process were smaller (~10 nm) than those prepared using the impregnation method (~20 nm), and the small catalyst size enabled an increase in surface area and catalytic acid sites. The NOX removal efficiencies at temperatures between 200 and 250 °C were enhanced by approximately 30% compared to those of the catalysts prepared using the conventional impregnation method. The NH3-temperature-programmed desorption and H2-temperature-programmed reduction results confirmed that the polyol process produced more surface acid sites at low temperatures and enhanced the redox ability. The in situ Fourier-transform infrared spectra further elucidated the fast absorption of NH3 and its reduction with NO and O2 on the prepared catalyst surfaces. This study provides an effective approach to synthesizing efficient low-temperature SCR catalysts and may contribute to further studies related to other catalytic systems.

5.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830182

RESUMO

We demonstrated highly efficient oxygen reduction catalysts composed of uniform Pt nanoparticles on small, reduced graphene oxides (srGO). The reduced graphene oxide (rGO) size was controlled by applying ultrasonication, and the resultant srGO enabled the morphological control of the Pt nanoparticles. The prepared catalysts provided efficient surface reactions and exhibited large surface areas and high metal dispersions. The resulting Pt/srGO samples exhibited excellent oxygen reduction performance and high stability over 1000 cycles of accelerated durability tests, especially the sample treated with 2 h of sonication. Detailed investigations of the structural and electrochemical properties of the resulting catalysts suggested that both the chemical functionality and electrical conductivity of these samples greatly influence their enhanced oxygen reduction efficiency.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Oxigênio/química , Platina/química , Algoritmos , Catálise , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Análise Espectral Raman
6.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685118

RESUMO

Selective catalytic reduction (SCR) is the most efficient NOX removal technology, and the vanadium-based catalyst is mainly used in SCR technology. The vanadium-based catalyst showed higher NOX removal performance in the high-temperature range but catalytic efficiency decreased at lower temperatures, following exposure to SOX because of the generation of ammonium sulfate on the catalyst surface. To overcome these limitations, we coated an NH4+ layer on a vanadium-based catalyst. After silane coating the V2O5-WO3/TiO2 catalyst by vapor evaporation, the silanized catalyst was heat treated under NH3 gas. By decomposing the silane on the surface, an NH4+ layer was formed on the catalyst surface through a substitution reaction. We observed high NOX removal efficiency over a wide temperature range by coating an NH4+ layer on a vanadium-based catalyst. This layer shows high proton conductivity, which leads to the reduction of vanadium oxides and tungsten oxide; additionally, the NOX removal performance was improved over a wide temperature range. These findings provide a new mothed to develop SCR catalyst with high efficiency at a wide temperature range.

7.
ACS Appl Mater Interfaces ; 13(44): 53171-53180, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709778

RESUMO

A wide range of liquid and solid contaminants can adhere to everyday functional surfaces and dramatically alter their performance. Numerous surface modification strategies have been developed that can reduce the fouling of some solids or repel certain liquids but are generally limited to specific contaminants or class of foulants. This is due to the typically distinct mechanisms that are employed to repel liquids vs solids. Here, we demonstrate a rapid and facile surface modification technique that yields a thin film of linear chain siloxane molecules covalently tethered to a surface. We investigate and characterize the liquid-like morphology of these surfaces in detail as the key contributing factor to their anti-fouling performance. This surface treatment is extremely durable and readily repels a broad range of liquids with varying surface tensions and polarities, including water, oils, organic solvents, and even fluorinated solvents. Additionally, the flexible, liquid-like nature of these surfaces enables interfacial slippage, which dramatically reduces adhesion to various types of solids, including ice, wax, calcined gypsum, and cyanoacrylate adhesives, and also minimizes the nucleation of inorganic scale. The developed surfaces are durable and simple to fabricate, and they minimize fouling by both liquids and solids simultaneously.

8.
Nanomaterials (Basel) ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070897

RESUMO

In this study, we synthesized V2O5-WO3/TiO2 catalysts with different crystallinities via one-sided and isotropic heating methods. We then investigated the effects of the catalysts' crystallinity on their acidity, surface species, and catalytic performance through various analysis techniques and a fixed-bed reactor experiment. The isotropic heating method produced crystalline V2O5 and WO3, increasing the availability of both Brønsted and Lewis acid sites, while the one-sided method produced amorphous V2O5 and WO3. The crystalline structure of the two species significantly enhanced NO2 formation, causing more rapid selective catalytic reduction (SCR) reactions and greater catalyst reducibility for NOX decomposition. This improved NOX removal efficiency and N2 selectivity for a wider temperature range of 200 °C-450 °C. Additionally, the synthesized, crystalline catalysts exhibited good resistance to SO2, which is common in industrial flue gases. Through the results reported herein, this study may contribute to future studies on SCR catalysts and other catalyst systems.

9.
Glob Chall ; 4(10): 2000009, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33033625

RESUMO

Membrane-based technologies are attractive for remediating oily wastewater because they are relatively energy-efficient and are applicable to a wide range of industrial effluents. For complete treatment of oily wastewater, removing dissolved contaminants from the water phase is typically followed by adsorption onto an adsorbent, which complicates the process. Here, an in-air superhydrophilic and underwater superoleophobic membrane-based continuous separation of surfactant-stabilized oil-in-water emulsions and in situ decontamination of water by visible-light-driven photocatalytic degradation of dissolved organic contaminants is reported. The membrane is fabricated by utilizing a thermally sensitized stainless steel mesh coated with visible light absorbing iron-doped titania nanoparticles. Post annealing of the membrane can enhance the adhesion of nanoparticles to the membrane surface by formation of a bridge between them. An apparatus that enables continuous separation of surfactant-stabilized oil-in-water emulsion and in situ photocatalytic degradation of dissolved organic matter in the water-rich permeate upon irradiation of visible light on the membrane surface with greater than 99% photocatalytic degradation is developed. The membrane demonstrates the recovery of its intrinsic water-rich permeate flux upon continuous irradiation of light after being contaminated with oil. Finally, continuous oil-water separation and in situ water decontamination is demonstrated by photocatalytically degrading model toxins in water-rich permeate.

10.
RSC Adv ; 10(28): 16700-16708, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498861

RESUMO

Oxygen functionalized carbon nanotubes synthesized by surface acid treatment were used to improve the dispersion properties of active materials for catalysis. Carbon nanotubes have gained attention as a support for active materials due to their high specific surface areas (400-700 m2 g-1) and chemical stability. However, the lack of surface functionality causes poor dispersion of active materials on carbon nanotube supports. In this study, oxygen functional groups were prepared on the surface of carbon nanotubes as anchoring sites for decoration with catalytic nanoparticles. The oxygen functional groups were prepared through a chemical acid treatment using sulfuric acid and nitric acid, and the amount of functional groups was controlled by the reaction time. Vanadium, tungsten, and titanium oxides as catalytic materials were dispersed using an impregnation method on the synthesized carbon nanotube surfaces. Due to the high density of oxygen functional groups, the catalytic nanoparticles were well dispersed and reduced in size on the surface of the carbon nanotube supports. The selective catalytic reduction catalyst with the oxygen functionalized carbon nanotube support exhibited enhanced NO x removal efficiency of over 90% at 350-380 °C which is the general operating temperature range of catalysis in power plants.

11.
ACS Appl Mater Interfaces ; 11(33): 30240-30246, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31339304

RESUMO

Corrosion-protective surfaces are of the utmost relevance to ensure long-term stability and reliability of metals and alloys by limiting their interactions with corrosive species, such as water and ions. However, their practical applications are often limited either by the inability to repel low surface tension liquids such as oils and alcohols or by poor mechanical durability. Here, a superomniphobic surface is reported that can display very high contact angles for both high and low surface tension liquids as well as for concentrated acids and bases. Such extreme repellency allowed for approximately 20% of the corrosion rate compared to the conventional superhydrophobic corrosion protective coatings. Furthermore, the superomniphobic surface can autonomously repair mechanical damage at an elevated temperature (60 °C) within a short period of time (60 s), and the surface can restore its intrinsic corrosion protection performance. Such superomniphobic surfaces thus offer a wide range of potential applications, including pipelines, with sustainable corrosion protection and rust inhibitors for steel in reinforced concrete.

12.
RSC Adv ; 10(1): 402-410, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492544

RESUMO

A reserve battery is a device which is inert until its activation and generates electricity by injecting an electrolyte for the purpose of immediate use. Due to a relatively short history and the use in restricted fields, reserve batteries have not attracted attention without any technical advance such as be being flexible and foldable. In this study, we demonstrate a way of fabricating a flexible and even foldable reserve battery which is activated by various solutions. A paper electrode composed of cellulose and carbon nanotube, which is working as a cathode, was assembled with a sheet of an aluminum anode. The injection of a NaCl solution resulted in approximately 0.7 V while a KOH solution led to a much higher voltage of 1.3 V than the NaCl electrolyte. Impedance analysis unveiled that the best discharge performance was found in the reserve battery showing the smallest semicircle in impedance spectra, irrespective of electrolytes. And, folding the battery did not degrade the discharge performance, compared with an unfolded battery. Furthermore, the battery cell was even activated by seawater, resulting in about 0.7 V and a nice discharge performance. We think that our battery system can be extended to other reserve batteries requiring flexibility and foldability.

13.
ACS Nano ; 11(1): 478-489, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28114759

RESUMO

Superomniphobic surfaces display contact angles of θ* > 150° and low contact angle hysteresis with virtually all high and low surface tension liquids. The introduction of hierarchical scales of texture can increase the contact angles and decrease the contact angle hysteresis of superomniphobic surfaces by reducing the solid-liquid contact area. Thus far, it has not been possible to fabricate superomniphobic surfaces with three or more hierarchical scales of texture where the size, spacing, and angular orientation of features within each scale of texture can be independently varied and controlled. Here, we report a method for tunable control of geometry in hyperbranched ZnO nanowire (NW) structures, which in turn enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angles for a variety of liquids, which is supported by mathematical models. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles with water 172°/170°, hexadecane 166°/156°, octane 162°/145°, and heptane 160°/130°.

14.
Sci Adv ; 2(3): e1501496, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998520

RESUMO

Ice accretion has a negative impact on critical infrastructure, as well as a range of commercial and residential activities. Icephobic surfaces are defined by an ice adhesion strength τice < 100 kPa. However, the passive removal of ice requires much lower values of τice, such as on airplane wings or power lines (τice < 20 kPa). Such low τice values are scarcely reported, and robust coatings that maintain these low values have not been reported previously. We show that, irrespective of material chemistry, by tailoring the cross-link density of different elastomeric coatings and by enabling interfacial slippage, it is possible to systematically design coatings with extremely low ice adhesion (τice < 0.2 kPa). These newfound mechanisms allow for the rational design of icephobic coatings with virtually any desired ice adhesion strength. By using these mechanisms, we fabricate extremely durable coatings that maintain τice < 10 kPa after severe mechanical abrasion, acid/base exposure, 100 icing/deicing cycles, thermal cycling, accelerated corrosion, and exposure to Michigan wintery conditions over several months.


Assuntos
Desenho de Equipamento , Gelo , Microscopia de Força Atômica , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 7(7): 4075-80, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25625176

RESUMO

Precise control over the geometry and chemistry of multiphasic particles is of significant importance for a wide range of applications. In this work, we have developed one of the simplest methodologies for fabricating monodisperse, multiphasic micro- and nanoparticles possessing almost any composition, projected shape, modulus, and dimensions as small as 25 nm. The synthesis methodology involves the fabrication of a nonwettable surface patterned with monodisperse, wettable domains of different sizes and shapes. When such patterned templates are dip-coated with polymer solutions or particle dispersions, the liquids, and consequently the polymer or the particles, preferentially self-assemble within the wettable domains. Utilizing this phenomenon, we fabricate multiphasic assemblies with precisely controlled geometry and composition through multiple, layered depositions of polymers and/or particles within the patterned domains. Upon releasing these multiphasic assemblies from the template using a sacrificial layer, we obtain multiphasic particles. The templates can then be readily reused (over 20 times in our experiments) for fabricating a new batch of particles, enabling a rapid, inexpensive, and easily reproducible method for large-scale manufacturing of multiphasic particles.

16.
Nano Lett ; 14(4): 1961-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24611793

RESUMO

We fabricate high-efficiency, ultrathin (∼12 µm), flexible, upgraded metallurgical-grade polycrystalline silicon solar cells with multiple plasmonic layers precisely positioned on top of the cell to dramatically increase light absorption. This scalable approach increases the optical absorptivity of our solar cells over a broad range of wavelengths, and they achieve efficiencies η ≈ 11%. Detailed studies on the electrical and optical properties of the developed solar cells elucidate the light absorption contribution of each individual plasmonic layer. Finite-difference time-domain simulations were also performed to yield further insights into the obtained results. We anticipate that the findings from this work will provide useful design considerations for fabricating a range of different solar cell systems.

18.
Nano Lett ; 12(10): 5143-7, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22947134

RESUMO

We present a thin film (<20 µm) solar cell based on upgraded metallurgical-grade polycrystalline Si that utilizes silver nanoparticles atop silicon nanopillars created by block copolymer nanolithography to enhance light absorption and increase cell efficiency η > 8%. In addition, the solar cells are flexible and semitransparent so as to reduce balance of systems costs and open new applications for conformable solar cell arrays on a variety of surfaces. Detailed studies on the optical and electrical properties of the resulting solar cells suggest that both antireflective and light-trapping mechanisms are key to the enhanced efficiency.

19.
Adv Mater ; 23(47): 5618-22, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22021119

RESUMO

Mussel-inspired interfacial engineering is synergistically integrated with block copolymer (BCP) lithography for the surface nanopatterning of low surface energy substrate materials, including, Teflon, graphene, and gold. The image shows the Teflon nanowires and their excellent superhydrophobicity.


Assuntos
Ouro/química , Grafite/química , Nanoestruturas/química , Politetrafluoretileno/química , Impressão/métodos , Adesivos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
20.
Phys Rev Lett ; 106(17): 175502, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21635045

RESUMO

We report the synthesis of a Fe-porphyrin-like carbon nanotube from conventional plasma-enhanced chemical vapor deposition. Covalent but seamless incorporation of the 5-6-5-6 porphyrinic Fe-N(4) moiety into the graphene hexagonal side wall was elucidated by x-ray and ultraviolet photoemission spectroscopies and first-principles electronic structure calculations. The resulting biomimetic nanotube exhibits an excellent oxygen reduction catalytic activity with the extreme structural stability over 0.1×10(6) cycles, vastly superior to the commercial Pt-C catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA