Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136879

RESUMO

BACKGROUND: Inflammasomes recognize endogenous and exogenous danger signals, and subsequently induce the secretion of IL-1ß. Studying inflammasomes in the red fox (Vulpes vulpes) is crucial for wildlife veterinary medicine, as it can help control inflammatory diseases in foxes. METHODS: We investigated the activation and intracellular mechanisms of three inflammasomes (NLRP3, AIM2, and NLRC4) in fox peripheral blood mononuclear cells (PBMCs), using established triggers and inhibitors derived from humans and mice. RESULTS: Fox PBMCs exhibited normal activation and induction of IL-1ß secretion in response to representative inflammasome triggers (ATP and nigericin for NLRP3, dsDNA for AIM2, flagellin for NLRC4). Additionally, PBMCs showed normal IL-1ß secretion when inoculated with inflammasome-activating bacteria. In inhibitors of the inflammasome signaling pathway, fox inflammasome activation was compared with mouse inflammasomes. MCC950, a selective NLRP3 inhibitor, suppressed the secretion of dsDNA- and flagellin-mediated IL-1ß in foxes, unlike mice. CONCLUSIONS: These findings suggest that NLRP3 may have a common role in dsDNA- and flagellin-mediated inflammasome activation in the red fox. It implies that this fox inflammasome biology can be applied to the treatment of inflammasome-mediated diseases in the red fox.

2.
Front Biosci (Landmark Ed) ; 28(9): 210, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796716

RESUMO

Inflammasomes are cytosolic multi-protein complexes that play an important role in the innate immune system, inducing cytokine maturation and pyroptosis. Trained immunity is the induction of memory in innate immune cells by epigenetic reprogramming due to repeated inflammatory stimuli that alter the inflammatory response and increase resistance to infection or disease. Although it is speculated that nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR), and the NLR family pyrin domain containing 3 (NLRP3) inflammasomes respond to various inflammatory stimuli and are associated with trained immunity, the exact relationship is still unclear. This paper aims to introduce data from recent research on the role of inflammasomes in trained immunity through cellular immunometabolic and epigenetic reprogramming. It also suggests a new therapeutic strategy for inflammatory diseases through the complementary regulation of inflammasomes and trained immunity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Imunidade Treinada , Citocinas/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Piroptose/imunologia , Imunidade Treinada/imunologia , Humanos , Animais
3.
Sci Rep ; 12(1): 22484, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577816

RESUMO

Dysregulation of inflammasome activation induces chronic and excess inflammation resulting in several disorders, such as metabolic disorders and cancers. Thus, screening for its regulator derived from natural materials has been conducted progressively. JC2-11 (JC) was designed to enhance the antioxidant activity based on a chalcone, which is abundant in edible plants and a precursor of flavonoids. This study examined the effects of JC on inflammasome activation in human and murine macrophages. JC inhibited the secretion of interleukin (IL)-1ß and lactate dehydrogenases, and the cleavage of caspase-1 and gasdermin D in response to the tested activators (i.e., NLRP3, NLRC4, AIM2, and non-canonical inflammasome triggers). In addition, JC attenuated IL-1ß secretion from lipopolysaccharide (LPS)-injected mice, an inflammasome-mediating disease model. Mechanistically, JC blocked the expression of the inflammasome components during the priming step of the inflammasome, and interrupted the production of mitochondrial reactive oxygen species. In addition, JC inhibited the activity of caspase-1. In conclusion, JC may be a candidate pan-inflammasome inhibitor.


Assuntos
Chalcona , Inflamassomos , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Chalcona/farmacologia , Macrófagos/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
4.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290645

RESUMO

Maltol (3-hydroxy-2-methyl-4-pyrone) is used widely as a food and cosmetic supplement, and it has antioxidant and anti-inflammatory activities. Inflammasome causes the maturation and secretion of interleukin (IL)-1ß and -18 through the activation of caspase-1 (Casp1), which contributes to various inflammatory diseases. This study examined the effects of maltol on the inflammasome activation in macrophages and mice. Lipopolysaccharide (LPS)-primed macrophages were treated with a trigger of NLRP3, NLRC4, AIM2, or non-canonical (NC) inflammasomes in the presence of maltol. The secretion of IL-1ß and IL-18 and the cleavage of Casp1 were analyzed as indices of inflammasome activation. Mice were injected with LPS and an NLRP3 trigger with or without maltol, and the peritoneal IL-1ß secretions were observed. The effects of maltol on reactive oxygen species (ROS) production and Casp1 activity were analyzed to determine the mechanism. Maltol inhibited the activation of NLRP3 and NC inflammasomes, but it did not alter the other inflammasomes. Maltol also attenuated IL-1ß secretion resulting from the inflammasome activation in mice. The anti-inflammatory mechanism of maltol was revealed by the inhibition of ROS production and Casp1 activity. Maltol is suggested to be promising as a anti-inflammasome molecule.

5.
Int Immunopharmacol ; 101(Pt A): 108196, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601332

RESUMO

Parabens are synthetic chemicals widely used as preservatives in cosmetics, pharmaceuticals, and foods. Although parabens, i.e., ethyl- and methyl-parabens, are considered relatively safe, study of possible health hazards has been undertaken due to the frequent exposure to parabens and their accumulation in the body. In this study, we elucidated the effect of parabens on inflammasome induction of inflammatory responses in innate immunity, such as interleukin (IL)-1ß maturation and gasdermin D (GSDMD)-mediating pyroptosis. Parabens attenuated the inflammatory responses to intracellular lipopolysaccharide (LPS) triggering of non-canonical (NC) inflammasome activation, but did not alter canonical inflammasome (i.e., NLRP3, NLRC4 and AIM2) responses. The NC inflammasome is assembled by the interaction of murine caspase (Casp)-11 (Casp4/5 in human) with cytosolic LPS, inducing endotoxin sepsis. Parabens selectively inhibited NC inflammasome activation in both human and murine macrophages and diminished the peritoneal IL-1ß production in LPS-injected mice. Parabens blocked the cleavage of GSDMD, Casp1, and Casp4, but did not change the expression of Casp11 or the activity of Casp1. Taken together, the results indicate that parabens could disrupt Gram-negative pathogen infection through the inhibition of NC inflammasome activation.


Assuntos
Inflamassomos/efeitos dos fármacos , Parabenos/farmacologia , Animais , Western Blotting , Feminino , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359830

RESUMO

Lipocalin-2 (LCN2), a small secretory glycoprotein, is upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 inhibits bacterial growth by iron sequestration and regulates the innate immune system. Inflammasome activates the inflammatory caspases leading to pyroptosis and cytokine maturation. This study examined the effects of inflammasome activation on LCN2 secretion in response to TLR signaling. The triggers of NLRP3 inflammasome activation attenuated LCN2 secretion while it induced interleukin-1ß in mouse macrophages. In mice, NLRP3 inflammasome activation inhibited TLR-mediated LCN2 secretion. The inhibition of NLRP3 triggers on LCN2 secretion was caused by the inhibited transcription and translation of LCN2. At the same time, no changes in the other cytokines and IκBζ, a well-known transcriptional factor of Lcn2 transcription, were observed. Overall, NLRP3 triggers are a regulator of LCN2 expression suggesting a new linkage of inflammasome activation and LCN2 secretion in the innate immunity.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Lipocalina-2/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Trifosfato de Adenosina/farmacologia , Animais , Feminino , Fêmur/citologia , Fêmur/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Interleucina-1beta/genética , Lipocalina-2/genética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nigericina/farmacologia , Cultura Primária de Células , Células RAW 264.7 , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Tíbia/citologia , Tíbia/imunologia , Transcrição Gênica
7.
Cells ; 10(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440688

RESUMO

Gout is a recurrent and chronic form of arthritis caused by the deposition of monosodium urate (MSU) crystals in the joints. Macrophages intake MSU crystals, the trigger for NLRP3 inflammasome activation, which leads to the release of interleukin (IL)-1ß and results in the flaring of gout. The effects of temperature, an environmental factor for MSU crystallization, on IL-1ß secretion have not been well studied. This study examined the effects of temperature on inflammasome activation. Specific triggers activated canonical inflammasomes (NLRP3, NLRC4, and AIM2) in murine macrophages at various temperatures (25, 33, 37, 39, and 42 °C). The maturation of IL-1ß and caspase-1 was measured as an indicator for inflammasome activation. As expected, the optimal temperature of inflammasome activation was 37 °C. The MSU crystal-mediated activation of inflammasome increased at temperatures lower than 37 °C and decreased at higher temperatures. MSU crystals at lower temperatures enhanced IL-1ß secretion via the NLRP3 inflammasome pathway. A lower temperature promoted the formation of MSU crystals without changing phagocytosis. Overall, lower temperatures form more MSU crystals and enhance NLRP3 inflammasome activation. In light of these findings, it is possible that hyperthermia therapy may reduce gout flaring.


Assuntos
Gota/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Temperatura , Ácido Úrico/química , Animais , Caspase 1/metabolismo , Cristalização , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia
8.
Appl Microbiol Biotechnol ; 79(3): 379-88, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18385994

RESUMO

Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Omega, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Omega, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Esgotos/microbiologia , Acetatos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Fontes de Energia Bioelétrica/microbiologia , Reatores Biológicos/microbiologia , Eletroquímica , Eletrodos/microbiologia , Dados de Sequência Molecular , Nitratos/metabolismo , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA