Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 230: 81-90, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39276507

RESUMO

Methionine adenosyltransferase 2A (MAT2A) is an essential enzyme in the methionine cycle that generates S-adenosylmethionine (SAM) by reacting with methionine and ATP. SAM acts as a methyl donors for histone and DNA methylation, which plays key roles in zygotic genome activation (ZGA). However, the effects of MAT2A on porcine ZGA remain unclear. To investigate the function of MAT2A and its underlying mechanism in porcine ZGA, MAT2A was knocked down by double-stranded RNA injection at the 1-cell stage. MAT2A is highly expressed at every stage of porcine embryo development. The percentages of four-cell-stage embryos and blastocysts were lower in the MAT2A-knockdown (KD) group than in the control group. Notably, depletion of MAT2A decreased the levels of H3K4me2, H3K9me2/3, and H3K27me3 at the four-cell stage, whereas MAT2A KD reduced the transcriptional activity of ZGA genes. MAT2A KD decreased embryonic ectoderm development (EED) and enhancer of zeste homolog 2 (EZH2) expression. Exogenous SAM supplementation rescued histone methylation levels and developmental arrest induced by MAT2A KD. Additionally, MAT2A KD significantly increased DNA damage and apoptosis. In conclusion, MAT2A is involved in regulating transcriptional activity and is essential for regulating histone methylation during porcine ZGA.

2.
Reprod Domest Anim ; 59(9): e14715, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39262106

RESUMO

G-protein-coupled receptor kinase 2 (GRK2) interacts with Gßγ and Gαq, subunits of G-protein alpha, to regulate cell signalling. The second messenger inositol trisphosphate, produced by activated Gαq, promotes calcium release from the endoplasmic reticulum (ER) and regulates maturation-promoting factor (MPF) activity. This study aimed to investigate the role of GRK2 in MPF activity during the meiotic maturation of porcine oocytes. A specific inhibitor of GRK2 (ßi) was used in this study. The present study showed that GRK2 inhibition increased the percentage of oocyte arrest at the metaphase I (MI) stage (control: 13.84 ± 0.95%; ßi: 31.30 ± 4.18%), which resulted in the reduction of the maturation rate (control: 80.36 ± 1.94%; ßi: 65.40 ± 1.14%). The level of phospho-GRK2 decreased in the treated group, suggesting that GRK2 activity was reduced upon GRK2 inhibition. Furthermore, the addition of ßi decreased Ca2+ release from the ER. The protein levels of cyclin B and cyclin-dependent kinase 1 were higher in the treatment group than those in the control group, indicating that GRK2 inhibition prevented a decrease in MPF activity. Collectively, GRK2 inhibition induced meiotic arrest at the MI stage in porcine oocytes by preventing a decrease in MPF activity, suggesting that GRK2 is essential for oocyte meiotic maturation in pigs.


Assuntos
Cálcio , Quinase 2 de Receptor Acoplado a Proteína G , Meiose , Oócitos , Animais , Oócitos/efeitos dos fármacos , Meiose/efeitos dos fármacos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Feminino , Cálcio/metabolismo , Suínos , Fator Promotor de Maturação/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária
3.
Microsc Microanal ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226079

RESUMO

The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown. In this study, we investigated changes in NDUFS2 expression during postovulatory aging (POA). Furthermore, NDUFS2 was knocked down via dsRNA microinjection at the MII stage to evaluate the effects on mitochondrial-related processes during POA. The mRNA expression of NDUFS2 decreased significantly after 48-h aging compared with that in fresh oocytes. NDUFS2 knockdown (KD) significantly impaired the maintenance of oocyte morphology and blastocyst development of embryos after POA. The levels of PGC1α (mitochondrial biogenesis-related proteins) decreased significantly after NDUFS2 KD, while the level of GSNOR, a protein denitrosylase, was reduced by NDUFS2 KD after 48 h of aging. These data suggest that NDUFS2 is vital for maintaining the oocyte quality during POA in pigs.

4.
Reproduction ; 168(4)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39051904

RESUMO

In brief: GRK2 deficiency disrupts the early embryonic development in pigs. The regulation of GRK2 on HSP90 and AKT may also play an important role during embryo development and tumor formation. Abstract: Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, G-protein-coupled receptor kinase 2 (GRK2) binds to HSP90 in response to hypoxia or other stresses. In this study, we investigated the effects of GRK2 knockdown and inhibition on porcine embryonic development from the zygote stage. Immunofluorescence and western blotting were used to determine the localization and expression, respectively, of GRK2 and related proteins. First, GRK2 and p-GRK2 were expressed in both the cytoplasm and membrane and co-localized with HSP90 on the membrane. The mRNA level of GRK2 increased until the 8C-morula stage, suggesting that GRK2 may play an essential role during the early development of the porcine embryos. GRK2 knockdown reduced porcine embryo development capacity and led to significantly decreased blastocyst quality. In addition, inhibition of GRK2 also induced poor ability of embryo development at an early stage, indicating that GRK2 is critical for embryonic cleavage in pigs. Knockdown and inhibition of GRK2 reduced HSP90 expression, AKT activation, and cAMP levels. Additionally, GRK2 deficiency increased LC3 expression, suggesting enhanced autophagy during embryo development. In summary, we showed that GRK2 binds to HSP90 on the membrane to regulate embryonic cleavage and AKT activation during embryonic development in pigs.


Assuntos
Desenvolvimento Embrionário , Quinase 2 de Receptor Acoplado a Proteína G , Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento
5.
Antioxidants (Basel) ; 13(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39061935

RESUMO

Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that "organelles", especially "mitochondria", were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the "electron transport chain" and "cell redox homeostasis" pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait-module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in "RNA binding", "mRNA metabolic process", etc., as well as in GO terms, and "spliceosome" and "nucleotide excision repair" pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species.

6.
Biochem Biophys Res Commun ; 706: 149747, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479243

RESUMO

Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.


Assuntos
Flavonas , Mitocôndrias , Sirtuína 1 , Animais , Suínos , Sirtuína 1/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Oócitos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
7.
FASEB J ; 37(12): e23274, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37917004

RESUMO

Glucose-regulated protein 78 (GRP78) binds to and stabilizes melanocortin 4 receptor (MC4R), which activates protein kinase A (PKA) by regulating G proteins. GRP78 is primarily used as a marker for endoplasmic reticulum stress; however, its other functions have not been well studied. Therefore, in this study, we aimed to investigate the function of GRP78 during porcine embryonic development. The developmental quality of porcine embryos, expression of cell cycle proteins, and function of mitochondria were evaluated by inhibiting the function of GRP78. Porcine oocytes were activated to undergo parthenogenesis, and blastocysts were obtained after 7 days of in vitro culture. GRP78 function was inhibited by adding 20 µM HA15 to the in vitro culture medium. The inhibition in GRP78 function led to a decrease in G proteins release, which subsequently downregulated the cyclic adenosine monophosphate (cAMP)/PKA pathway. Ultimately, inhibition of GRP78 function induced the inhibition of CDK1 and cyclin B expression and disruption of the cell cycle. In addition, inhibition of GRP78 function regulated DRP1 and SIRT1 expression, resulting in mitochondrial dysfunction. This study provides new insights into the role of GRP78 in porcine embryonic development, particularly its involvement in the regulation of the MC4R pathway and downstream cAMP/PKA signaling. The results suggest that the inhibition of GRP78 function in porcine embryos by HA15 treatment may have negative effects on embryo quality and development. This study also demonstrated that GRP78 plays a crucial role in the functioning of MC4R, which releases the G protein during porcine embryonic development.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Receptor Tipo 4 de Melanocortina , Feminino , Gravidez , Suínos , Animais , Desenvolvimento Embrionário , Partenogênese , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Proteínas de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA