Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35562190

RESUMO

A wearable textile that is engineered to reflect incoming sunlight and allow the transmission of mid-infrared radiation simultaneously would have a great impact on the human body's thermal regulation in an outdoor environment. However, developing such a textile is a tough challenge. Using nanoparticle-doped polymer (zinc oxide and polyethylene) materials and electrospinning technology, we have developed a nanofabric with the desired optical properties and good applicability. The nanofabric offers a cool fibrous structure with outstanding solar reflectivity (91%) and mid-infrared transmissivity (81%). In an outdoor field test under exposure of direct sunlight, the nanofabric was demonstrated to reduce the simulated skin temperature by 9 °C when compared to skin covered by a cotton textile. A heat-transfer model is also established to numerically assess the cooling performance of the nanofabric as a function of various climate factors, including solar intensity, ambient air temperature, atmospheric emission, wind speed, and parasitic heat loss rate. The results indicate that the nanofabric can completely release the human body from unwanted heat stress in most conditions, providing an additional cooling effect as well as demonstrating worldwide feasibility. Even in some extreme conditions, the nanofabric can also reduce the human body's cooling demand compared with traditional cotton textile, proving this material as a feasible solution for better thermoregulation of the human body. The facile fabrication of such textiles paves the way for the mass adoption of energy-free personal cooling technology in daily life, which meets the growing demand for healthcare, climate change, and sustainability.

2.
ACS Appl Mater Interfaces ; 13(19): 22495-22504, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33969687

RESUMO

Optically transparent wood has emerged as a promising glazing material. Thanks to the high optical transmittance, strong mechanical properties, and excellent thermal insulation capability of transparent wood, it offers a potential alternative to glass for window applications. Recently, thermo-, electro-, and photochromic transparent woods that dynamically modulate light transmittance have been investigated to improve building energy efficiency. However, it remains challenging to widely replace windows with transparent wood because of its poor weather resistance. In this study, an environment-friendly thermochromic transparent wood film (TTWF) with thermal switching of transmittance is proposed and demonstrated. To achieve thermochromism, the bleached wood is impregnated with the vanadium dioxide (VO2)/polyvinyl alcohol composite. Due to the self-densification of cellulose microfibrils during the evaporation of solvents, the transparent wood is in the form of thin films, which can be attached on the inner face of a window to protect it from severe weather conditions, making the installation convenient and low-cost. Furthermore, the surface of VO2-TTWF is modified by octadecyltrichlorosilane to enhance the waterproof ability and achieve self-cleaning and antidust functions. The proposed VO2-TTWF shows great potential for application in energy-efficient buildings using sustainable materials with advanced optical properties (i.e., Tlum = 50.5%, ΔTsol = 3.4%, and haze = 70%) that are mechanically robust (i.e., σ = 130.6 MPa along the wood growth direction), have low-thermal conductivity (i.e., K = 0.29 W m-1 K-1 along the perpendicular direction to the wood fibers), and demonstrate hydrophobic self-cleaning and antidust functions (i.e., contact angle: 121.9°). An experiment, using a model house, showed that the VO2-TTWF attached on the inner face of the window could significantly reduce the indoor air temperature by 33.9 °C compared with a bare glass panel, proving that VO2-TTWF has potential to be applied as a new-generation energy-efficient material for smart windows.

3.
Sci Rep ; 10(1): 11376, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647345

RESUMO

Vanadium dioxide (VO2) is a promising material for thermochromic glazing. However, VO2 thermochromic smart windows suffer from several problems that prevent commercialization: low luminous transmittance (Tlum) and low solar modulation ability (ΔTsol). The solution to these problems can be sought from nature where the evolution of various species has enabled them to survive. Investigations into the morphology of moths eyes has shown that their unique nanostructures provide an excellent antireflection optical layer that helps moths sharply capture the light in each wavelength from a wide angle. Inspired by this mechanism, a VO2 thermochromic smart window coated with a TiO2 antireflection layer with a novel nano-cone structure, is presented in this study to achieve high Tlum and ΔTsol. Optimization for the key structure parameters is summarized based on the FDTD numerical simulations. The optimized structure exhibits a Tlum of 55.4% with ΔTsol of 11.3%, an improvement of about 39% and 72% respectively compared to the VO2 window without an antireflection layer. Furthermore, wide-angle antireflection and polarization independence are also demonstrated by this nano-cone coating. This work provides an alternative method to enhance the optical performance of VO2 smart windows.

4.
Indoor Air ; 29(5): 791-802, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132307

RESUMO

Particle resuspension has been recognized as a secondary source of indoor air pollution by many field studies. However, some laboratory studies showed that the air velocities or force fields required to resuspend aerosol particles are very high that rarely occurred in indoor environments. In fact, the surfaces used in these studies were treated to ensure cleanliness, but in reality, dusty surfaces are ubiquitous in our daily life. This work aims to investigate the effect of dust on a surface on resuspension of a coarse particle (polyethylene) by a centrifugal method. Dusty surfaces with different loadings were made by gravitational settling of Arizona test dust on a clean poly(methyl methacrylate) substrate inside a deposition chamber. The resuspension of dust particles was first investigated, and it was found that dust particles were resuspended by two stages with different rates of resuspension. For the resuspension of the particles on the dusty surface, the remaining fraction of the polyethylene particles decreased with increasing force field and dust loading. Dust could greatly reduce the adhesion of the particles from one to two orders of magnitude depending on loadings. This gives an explanation to the discrepancy between the field and the laboratory studies.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Material Particulado/análise , Aerossóis , Arizona , Tamanho da Partícula , Polietileno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA