Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Microbiol ; 157(9): 876-84, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16962743

RESUMO

Tea is rich in polyphenols and other phenolics that have been widely reported to have beneficial health effects. However, dietary polyphenols are not completely absorbed from the gastrointestinal tract and are metabolized by the gut microflora so that they and their metabolites may accumulate to exert physiological effects. In this study, we investigated the influence of the phenolic components of a tea extract and their aromatic metabolites upon bacterial growth. Fecal homogenates containing bacteria significantly catalyzed tea phenolics, including epicatechin, catechin, 3-O-methyl gallic acid, gallic acid and caffeic acid to generate aromatic metabolites dependent on bacterial species. Different strains of intestinal bacteria had varying degrees of growth sensitivity to tea phenolics and metabolites. Growth of certain pathogenic bacteria such as Clostridium perfringens, Clostridium difficile and Bacteroides spp. was significantly repressed by tea phenolics and their derivatives, while commensal anaerobes like Clostridium spp., Bifidobacterium spp. and probiotics such as Lactobacillus sp. were less severely affected. This indicates that tea phenolics exert significant effects on the intestinal environment by modulation of the intestinal bacterial population, probably by acting as metabolic prebiotics. Our observations provide further evidence for the importance of colonic bacteria in the metabolism, absorption and potential activity of phenolics in human health and disease. The bioactivity of different phenolics may play an important role in the maintenance of gastrointestinal health.


Assuntos
Bactérias/efeitos dos fármacos , Fezes/microbiologia , Flavonoides/farmacologia , Intestinos/microbiologia , Fenóis/farmacologia , Chá/química , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Flavonoides/química , Flavonoides/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidrocarbonetos Aromáticos/metabolismo , Hidrocarbonetos Aromáticos/farmacologia , Mucosa Intestinal/metabolismo , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Fenóis/química , Fenóis/metabolismo , Polifenóis , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento
2.
J Neurosci Res ; 84(2): 244-54, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16721762

RESUMO

A protein with an apparent molecular size of 490 kDa was found in the postsynaptic density (PSD) fraction isolated from porcine cerebral cortices and rat forebrains, and this 490 kDa protein accounted for approximately 3% of the total protein of these samples. Matrix-assisted laser desorption ionization-time of flight mass spectrometric and Western blotting analyses consistently indicated that this 490 kDa protein consisted primarily of the heavy chain of cytoplasmic dynein (cDHC). Immunocytochemical analyses showed that cDHC was found in 92% and 89% of the phalloidin-positive protrusions that were themselves associated with discrete clusters of synaptophysin, a presynaptic terminal marker, and PSD-95, a postsynaptic marker, on neuronal processes, respectively. Quantitative Western blotting analyses of various subcellular fractions isolated from porcine cerebral cortices and rat forebrains further showed that not only the heavy but also the intermediate chains of dynein are enriched in the PSD fraction. Cytoplasmic dynein is a microtubule-associated motor protein complex that drives the movement of various cargos toward the minus ends of microtubules and plays many other diverse functions in the cell. Our results that cDHC is a major component of the PSD fraction, that both dynein heavy and intermediate chains are enriched in the PSD fraction and that cDHC is present in dendritic spines raise the possibilities that cytoplasmic dynein may play structural and functional roles in the postsynaptic terminal.


Assuntos
Química Encefálica , Citoplasma/química , Dineínas/análise , Frações Subcelulares/química , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Proteínas do Tecido Nervoso/química , Neurônios/química , Proteínas Qa-SNARE/análise , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos , Sinaptofisina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA