Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 10(24): 7149-7161, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36367125

RESUMO

Infections caused by multidrug-resistant (MDR) bacteria pose an impending threat to humanity, as the evolution of MDR bacteria outpaces the development of effective antibiotics. In this work, we use indium phosphide (InP) quantum dots (QDs) to treat infections caused by MDR bacteria via photodynamic therapy (PDT), which shows superior bactericidal efficiency over common antibiotics. PDT in the presence of InP QDs results in high-efficiency bactericidal activity towards various bacterial species, including Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Upon light absorption, InP QDs generate superoxide (O2˙-), which leads to efficient and selective killing of MDR bacteria while mammalian cells remain intact. The cytotoxicity evaluation reveals that InP QDs are bio- and blood-compatible in a wide therapeutic window. For the in vivo study, we drop a solution of InP QDs at a concentration within the therapeutic window onto MDR S. aureus-infected skin wounds of mice and perform PDT for 15 min. InP QDs show excellent therapeutic and prophylactic efficacy in treating MDR bacterial infection. These findings show that InP QDs have great potential to serve as antibacterial agents for MDR bacterial infection treatment, as an effective and complementary alternative to conventional antibiotics.


Assuntos
Infecções Bacterianas , Staphylococcus aureus , Humanos , Infecções Bacterianas/tratamento farmacológico
2.
J Am Chem Soc ; 144(24): 10798-10808, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35635255

RESUMO

There is an evergrowing demand for environment-friendly processes to synthesize ammonia (NH3) from atmospheric nitrogen (N2). Although diazotrophic N2 fixation represents an undeniably "green" process of NH3 synthesis, the slow reaction rate makes it less suitable for industrially meaningful large-scale production. Here, we report the photoinduced N2 fixation using a hybrid system composed of colloidal quantum dots (QDs) and aerobic N2-fixing bacteria, Azotobacter vinelandii. Compared to the case where A. vinelandii cells are simply mixed with QDs, NH3 production increases significantly when A. vinelandii cells are cultured in the presence of core/shell InP/ZnSe QDs. During the cell culture of A. vinelandii, the cellular uptake of QDs is facilitated in the exponential growth phase. Experimental results as well as theoretical calculations indicate that the photoexcited electrons in QDs within A. vinelandii cells are directly transferred to MoFe protein, the catalytic component of nitrogenase. We also observe that the excess amount of QDs left on the outer surface of A. vinelandii disrupts the cellular membrane, leading to the decrease in NH3 production due to the deactivation of nitrogenase. The successful uptake of QDs in QD-A. vinelandii hybrid with minimal amount of QDs on the outer surface of the bacteria is key to efficient photosensitized NH3 production. The comprehensive understanding of the QD-bacteria interface paves an avenue to novel and efficient nanobiohybrid systems for chemical production.


Assuntos
Azotobacter vinelandii , Pontos Quânticos , Amônia/metabolismo , Azotobacter vinelandii/metabolismo , Bactérias/metabolismo , Molibdoferredoxina/metabolismo , Fixação de Nitrogênio , Nitrogenase/metabolismo
3.
Nanoscale ; 11(31): 14887-14895, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31360982

RESUMO

Herein, we report a luminescent light-emitting diode (LED) encapsulating material using a thermally curable quantum dot (QD)/siloxane hybrid (TSE-QD) color converter, which has superior long-term stability even at elevated temperatures, in high humidity, and in various chemicals. The TSE-QD is cured by a thermal-induced hydrosilylation reaction of an in situ sol-gel synthesized QD dispersed siloxane resin (QD/siloxane resin) without additional ligand-exchange processes. QDs are successfully encapsulated by highly condensed and linear structured siloxane networks with additional chemical linkages between the surface ligands of the QDs and organic functional groups of the siloxane matrix. Moreover, QDs are uniformly distributed within the siloxane matrix retaining their optical properties during the fabrication processes of the TSE-QD. The result is that the stability, as evaluated by the photoluminescence (PL) quantum yield (QY), is greatly improved under harsh conditions, for example, 120 °C/5% relative humidity (RH), ethanol and acetone for 30 days. Based on the exceptionally stable TSE-QD, we demonstrate a white LED using a blue LED chip directly encapsulated by a yellow emitting TSE-QD that shows excellent spectral stability, outstanding reliability at 85 °C/85% RH and a wide color gamut (116% of NTSC).

4.
Materials (Basel) ; 11(6)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895776

RESUMO

In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe3O4 nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m²/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination.

5.
Sci Rep ; 8(1): 4540, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540724

RESUMO

In the present study, we successfully synthesized a porous three-dimensional Prussian blue-cellulose aerogel (PB-CA) composite and used it as a decorporation agent for the selective removal of ingested cesium ions (Cs+) from the gastrointestinal (GI) tract. The safety of the PB-CA composite was evaluated through an in vitro cytotoxicity study using macrophage-like THP-1 cells and Caco-2 intestinal epithelial cells. The results revealed that the PB-CA composite was not cytotoxic. An adsorption study to examine the efficiency of the decorporation agent was conducted using a simulated intestinal fluid (SIF). The adsorption isotherm was fitted to the Langmuir model with a maximum Cs+ adsorption capacity of 13.70 mg/g in SIF that followed pseudo-second-order kinetics. The PB-CA composite showed excellent stability in SIF with a maximum Cs+ removal efficiency of 99.43%. The promising safety toxicology profile, remarkable Cs+ adsorption efficacy, and excellent stability of the composite demonstrated its great potential for use as an orally administered drug for the decorporation of Cs+ from the GI tract.


Assuntos
Celulose/química , Césio/isolamento & purificação , Ferrocianetos/química , Trato Gastrointestinal/química , Administração Oral , Adsorção , Células CACO-2 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Células THP-1
6.
Int J Nanomedicine ; 13: 221-234, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29379283

RESUMO

INTRODUCTION: Positron emission tomography (PET) tracers has the potential to revolutionize cancer imaging and diagnosis. PET tracers offer non-invasive quantitative imaging in biotechnology and biomedical applications, but it requires radioisotopes as radioactive imaging tracers or radiopharmaceuticals. METHOD: This paper reports the synthesis of 18F-nGO-PEG by covalently functionalizing PEG with nano-graphene oxide, and its excellent stability in physiological solutions. Using a green synthesis route, nGO is then functionalized with a biocompatible PEG polymer to acquire high stability in PBS and DMEM. RESULTS AND DISCUSSION: The radiochemical safety of 18F-nGO-PEG was measured by a reactive oxygen species and cell viability test. The biodistribution of 18F-nGO-PEG could be observed easily by PET, which suggested the significantly high sensitivity tumor uptake of 18F-nGO-PEG and in a tumor bearing CT-26 mouse compared to the control. 18F-nGO-PEG was applied successfully as an efficient radiotracer or drug agent in vivo using PET imaging. This article is expected to assist many researchers in the fabrication of 18F-labeled graphene-based bio-conjugates with high reproducibility for applications in the biomedicine field.


Assuntos
Grafite/química , Nanocompostos/química , Compostos Radiofarmacêuticos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Grafite/farmacologia , Química Verde , Humanos , Células MCF-7 , Camundongos Nus , Óxidos/química , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA