Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(2): e2305143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670210

RESUMO

Molybdenum disulfide (MoS2 ), a metal dichalcogenide, is a promising channel material for highly integrated scalable transistors. However, intrinsic donor defect states, such as sulfur vacancies (Vs ), can degrade the channel properties and lead to undesired n-doping. A method for healing the donor defect states in monolayer MoS2 is proposed using oxygen plasma, with an aluminum oxide (Al2 O3 ) barrier layer that protects the MoS2 channel from damage by plasma treatment. Successful healing of donor defect states in MoS2 by oxygen atoms, even in the presence of an Al2 O3 barrier layer, is confirmed by X-ray photoelectron spectroscopy, photoluminescence, and Raman spectroscopy. Despite the decrease in 2D sheet carrier concentration (Δn2D = -3.82×1012 cm-2 ), the proposed approach increases the on-current and mobility by 18% and 44% under optimal conditions, respectively. Metal-insulator transition occurs at electron concentrations of 5.7×1012 cm-2 and reflects improved channel quality. Finally, the activation energy (Ea ) reduces at all the gate voltages (VG ) owing to a decrease in Vs , which act as a localized state after the oxygen plasma treatment. This study demonstrates the feasibility of plasma-assisted healing of defects in 2D materials and electrical property enhancement and paves the way for the development of next-generation electronic devices.

2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420771

RESUMO

Frequency-modulated continuous wave (FMCW) radar system synchronization using external clock signals can cause repeated Range-Doppler (R-D) map corruption when clock signal asynchronization problems occur between the transmitter and receiver. In this paper, we propose a signal processing method for the reconstruction of the corrupted R-D map owing to the FMCW radar's asynchronization. After calculating the image entropy for each R-D map, the corrupted ones are extracted and reconstructed using the normal R-D maps acquired before and after the individual maps. To verify the effectiveness of the proposed method, three target detection experiments were conducted: a human target detection in an indoor environment and a wide place and a moving bike-rider target detection in an outdoor environment. The corrupted R-D map sequence of observed targets in each case was reconstructed properly and showed the validity by comparing the map-by-map range and speed changes in the detected target with the ground-truth information of the target.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Humanos , Ultrassonografia Doppler
3.
Sensors (Basel) ; 21(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34770703

RESUMO

Vital signal detection using multiple radars is proposed to reduce the signal degradation from a subject's body movement. The phase variation in the transceiving signals of continuous-wave radar due to respiration and heartbeat is generated by the body surface movement of the organs monitored in the line-of-sight (LOS) of the radar. The body movement signals obtained by two adjacent radars can be assumed to be the same over a certain distance. However, the vital signals are different in each radar, and each radar has a different LOS because of the asymmetric movement of lungs and heart. The proposed method uses two adjacent radars with different LOS to obtain correlated signals that reinforce the difference in the asymmetrical movement of the organs. The correlated signals can improve the signal-to-noise ratio in vital signal detection because of a reduction in the body movement effect. Two radars at different frequencies in the 5.8 GHz band are implemented to reduce direct signal coupling. Measurement results using the radars arranged at angles of 30°, 45°, and 60° showed that the proposed method can detect the vital signals with a mean accuracy of 97.8% for the subject moving at a maximum velocity of 53.4 mm/s.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Frequência Cardíaca , Monitorização Fisiológica , Respiração
4.
Sensors (Basel) ; 21(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34640697

RESUMO

A detrending technique is proposed for continuous-wave (CW) radar to remove the effects of direct current (DC) offset, including DC drift, which is a very slow noise that appears near DC. DC drift is mainly caused by unwanted vibrations (generated by the radar itself, target objects, or surroundings) or characteristic changes in components in the radar owing to internal heating. It reduces the accuracy of the circle fitting method required for I/Q imbalance calibration and DC offset removal. The proposed technique effectively removes DC drift from the time-domain waveform of the baseband signals obtained for a certain time using polynomial fitting. The accuracy improvement in the circle fitting by the proposed technique using a 5.8 GHz CW radar decreases the error in the displacement measurement and increases the signal-to-noise ratio (SNR) in vital signal detection. The measurement results using a 5.8 GHz radar show that the proposed technique using a fifth-order polynomial fitting decreased the displacement error from 1.34 mm to 0.62 mm on average when the target was at a distance of 1 m. For a subject at a distance of 0.8 m, the measured SNR improved by 7.2 dB for respiration and 6.6 dB for heartbeat.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Frequência Cardíaca , Razão Sinal-Ruído
5.
Cyberpsychol Behav ; 10(4): 591-5, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17711370

RESUMO

Today millions of players interact with one another in online games, especially massively multiplayer online role-playing games (MMORPGs). These games promote interaction among players by offering interdependency features, but to date few studies have asked what interdependency design factors of MMORPGs make them fun for players, produce experiences of flow, or enhance player performance. In this study, we focused on two game design features: task and reward interdependency. We conducted a controlled experiment that compared the interaction effects of low and high task-interdependency conditions and low and high reward-interdependency conditions on three dependent variables: fun, flow, and performance. We found that in a low task-interdependency condition, players had more fun, experienced higher levels of flow, and perceived better performance when a low reward-interdependency condition also obtained. In contrast, in a high task-interdependency condition, all of these measures were higher when a high reward-interdependency condition also obtained.


Assuntos
Codependência Psicológica , Comportamento Cooperativo , Internet , Relações Interpessoais , Recompensa , Jogos de Vídeo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA