Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 40(4): 1989-1996, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32234888

RESUMO

BACKGROUND/AIM: The antitumor effect of sustained calcium supply on Src degradation was investigated in the context of hormone-dependent breast cancer, followed by elucidation of the underlying mechanisms. MATERIALS AND METHODS: Hormone-dependent T-47D breast cancer cells were used. Lactate calcium salt (LCS) was used as the source of sustained calcium supply, and the applicable concentration of LCS was determined by the colorimetric MTT assay. LCS-mediated deactivation of downstream signaling via Src degradation was identified by western blot and immunocytochemistry. RESULTS: Calcium-mediated degradation of Src decreased survival signaling via phosphoinositide 3-kinase and protein kinase B and resulted in significant inhibition of the clonogenic ability of hormone-dependent breast cancer cells. Tumor volume was significantly decreased in response to LCS injection in a heterotopic xenograft model, and immuno histochemistry revealed tumor necrosis. CONCLUSION: Sustained supply of calcium inhibited survival signaling via degradation of Src in hormone-dependent breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Proteólise/efeitos dos fármacos , Quinases da Família src/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Cálcio/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Ácido Láctico/farmacologia , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores
2.
Sci Rep ; 7(1): 4496, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674398

RESUMO

We report the enhanced thermoelectric properties of Ce-doped AgSbTe2 (AgSb1-xCexTe2) compounds. As the Ce contents increased, the proportion of heterophase Ag2Te in the AgSbTe2 gradually decreased, along with the size of the crystals. The electrical resistivity and Seebeck coefficient were dramatically affected by Ce doping and the lattice thermal conductivity was reduced. The presence of nanostructured Ag2Te heterophases resulted in a greatly enhanced dimensionless figure of merit, ZT of 1.5 at 673 K. These findings highlight the importance of the heterophase and doping control, which determines both electrical and thermal properties.

3.
Nat Commun ; 7: 13713, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941762

RESUMO

Recently SnSe, a layered chalcogenide material, has attracted a great deal of attention for its excellent p-type thermoelectric property showing a remarkable ZT value of 2.6 at 923 K. For thermoelectric device applications, it is necessary to have n-type materials with comparable ZT value. Here, we report that n-type SnSe single crystals were successfully synthesized by substituting Bi at Sn sites. In addition, it was found that the carrier concentration increases with Bi content, which has a great influence on the thermoelectric properties of n-type SnSe single crystals. Indeed, we achieved the maximum ZT value of 2.2 along b axis at 733 K in the most highly doped n-type SnSe with a carrier density of -2.1 × 1019 cm-3 at 773 K.

4.
ACS Appl Mater Interfaces ; 8(11): 7003-12, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26915474

RESUMO

Solid solutions of magnesium silicide and magnesium stannide were recently reported to have high thermoelectric figure-of-merits (ZT) due to remarkably low thermal conductivity, which was conjectured to come from phonon scattering by segregated Mg2Si and Mg2Sn phases without detailed study. However, it is essential to identify the main cause for further improving ZT as well as estimating its upper bound. Here we synthesized Mg2(Si,Sn) with nanoparticles and segregated phases, and theoretically analyzed and estimated the thermal conductivity upon segregated fraction and extraneous nanoparticle addition by fitting experimentally obtained thermal conductivity, electrical conductivity, and thermopower. In opposition to the previous speculation that segregated phases intensify phonon scattering, we found that lattice thermal conductivity was increased by the phase segregation, which is difficult to avoid due to the miscibility gap. We selected extraneous TiO2 nanoparticles dissimilar to the host materials as additives to reduce lattice thermal conductivity. Our experimental results showed the maximum ZT was improved from ∼0.9 without the nanoparticles to ∼1.1 with 2 and 5 vol % TiO2 nanoparticles at 550 °C. According to our theoretical analysis, this ZT increase by the nanoparticle addition mainly comes from suppressed lattice thermal conductivity in addition to lower bipolar thermal conductivity at high temperatures. The upper bound of ZT was predicted to be ∼1.8 for the ideal case of no phase segregation and addition of 5 vol % TiO2 nanoparticles. We believe this study offers a new direction toward improved thermoelectric performance of Mg2(Si,Sn).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA