RESUMO
The current expansion of the Internet of things (IoT) demands improved communication platforms that support a wide area with low energy consumption. The 3rd Generation Partnership Project introduced narrowband IoT (NB-IoT) as IoT communication solutions. NB-IoT devices should be available for over 10 years without requiring a battery replacement. Thus, a low energy consumption is essential for the successful deployment of this technology. Given that a high amount of energy is consumed for radio transmission by the power amplifier, reducing the uplink transmission time is key to ensure a long lifespan of an IoT device. In this paper, we propose a prediction-based energy saving mechanism (PBESM) that is focused on enhanced uplink transmission. The mechanism consists of two parts: first, the network architecture that predicts the uplink packet occurrence through a deep packet inspection; second, an algorithm that predicts the processing delay and pre-assigns radio resources to enhance the scheduling request procedure. In this way, our mechanism reduces the number of random accesses and the energy consumed by radio transmission. Simulation results showed that the energy consumption using the proposed PBESM is reduced by up to 34% in comparison with that in the conventional NB-IoT method.
RESUMO
Cellular-based machine-to-machine (M2M) communication is expected to facilitate services for the Internet of Things (IoT). However, because cellular networks are designed for human users, they have some limitations. Random access channel (RACH) congestion caused by massive access from M2M devices is one of the biggest factors hindering cellular-based M2M services because the RACH congestion causes random access (RA) throughput degradation and connection failures to the devices. In this paper, we show the possibility exploiting the capture effects, which have been known to have a positive impact on the wireless network system, on RA procedure for improving the RA performance of M2M devices. For this purpose, we analyze an RA procedure using a capture model. Through this analysis, we examine the effects of capture on RA performance and propose an Msg3 power-ramping (Msg3 PR) scheme to increase the capture probability (thereby increasing the RA success probability) even when severe RACH congestion problem occurs. The proposed analysis models are validated using simulations. The results show that the proposed scheme, with proper parameters, further improves the RA throughput and reduces the connection failure probability, by slightly increasing the energy consumption. Finally, we demonstrate the effects of coexistence with other RA-related schemes through simulation results.