Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063099

RESUMO

Wrinkles, one of the most common signs of aging, are primarily caused by the continuous contraction of muscles. Muscle contraction is induced by the binding of acetylcholine (ACh), released at the neuromuscular junction, to nicotinic acetylcholine receptor (nAChR) present on the muscle cell surface. In this study, we aimed to develop a wrinkle-improving peptide that inhibits the binding of ACh to nAChR using peptide phage display technology. Our peptide showed a remarkably high binding affinity to nAChR subunit α1, with a value below 1 µM, and was found to inhibit the action of ACh through its interaction with these receptors. Furthermore, it increased collagen synthesis in skin cells and upregulated the expression of the aquaporin-3 (AQP3) and hyaluronan synthase-2 (HAS2) genes. These results confirm that the peptide effectively inhibits muscle contraction and enhances skin elasticity and hydration, contributing to its wrinkle-reducing effects. Clinical studies on humans observed significant improvement in wrinkles after three weeks of use, with substantial reduction observed after six weeks. In conclusion, these findings demonstrate the efficacy of the peptide (named Medipep) in reducing wrinkles.


Assuntos
Peptídeos , Receptores Nicotínicos , Envelhecimento da Pele , Receptores Nicotínicos/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Humanos , Peptídeos/farmacologia , Peptídeos/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Feminino , Colágeno/metabolismo , Ligação Proteica , Pele/metabolismo , Pele/efeitos dos fármacos , Animais , Pessoa de Meia-Idade , Adulto
2.
J Phys Chem Lett ; 15(31): 8018-8025, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39082824

RESUMO

Molecular (dye) aggregates play a prominent role in light harvesting and are of interest in quantum information science; however, there are limited reports that programmably assemble many (>4) dye aggregates featuring strong coupling and exciton delocalization. Using oligonucleotides with four Cy5s covalently linked in series along the phosphate backbone, we bring 4, 8, and 16 Cy5s in close proximity by assembling four-armed junctions. We elucidate their structure via gel electrophoresis and steady-state and transient optical spectroscopy. We find that Cy5 has a strong propensity to form tetramer clusters, where the exciton is delocalized over all 4 Cy5s, that the exciton is not delocalized beyond tetramer clusters in the 8 and 16 Cy5 constructs, and that the 16 Cy5 construct may consist of pairs of tetramer clusters that are isolated from one another. Many-dye aggregates such as these may serve useful as antennae for their intense light absorption and spatially directed energy transfer.

3.
Nanoscale ; 16(31): 14959-14960, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39044540

RESUMO

Correction for 'Towards control of excitonic coupling in DNA-templated Cy5 aggregates: the principal role of chemical substituent hydrophobicity and steric interactions' by Sebastián A. Díaz et al., Nanoscale, 2023, 15, 3284-3299. https://doi.org/10.1039/D2NR05544A.

4.
Int J Biol Macromol ; 273(Pt 1): 133005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866268

RESUMO

Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.


Assuntos
Quitosana , Dermatite Atópica , Nanopartículas , Tacrolimo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Tacrolimo/química , Tacrolimo/farmacologia , Tacrolimo/administração & dosagem , Tacrolimo/farmacocinética , Tacrolimo/uso terapêutico , Quitosana/química , Animais , Nanopartículas/química , Camundongos , Humanos , Portadores de Fármacos/química , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Administração Tópica , Absorção Cutânea/efeitos dos fármacos , Liberação Controlada de Fármacos , Modelos Animais de Doenças , Células HaCaT
5.
Nanoscale ; 16(3): 1206-1222, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113123

RESUMO

Molecular aggregates exhibit emergent properties, including the collective sharing of electronic excitation energy known as exciton delocalization, that can be leveraged in applications such as quantum computing, optical information processing, and light harvesting. In a previous study, we found unexpectedly large excitonic interactions (quantified by the excitonic hopping parameter Jm,n) in DNA-templated aggregates of squaraine (SQ) dyes with hydrophilic-imparting sulfo and butylsulfo substituents. Here, we characterize DNA Holliday junction (DNA-HJ) templated aggregates of an expanded set of SQs and evaluate their optical properties in the context of structural heterogeneity. Specifically, we characterized the orientation of and Jm,n between dyes in dimer aggregates of non-chlorinated and chlorinated SQs. Three new chlorinated SQs that feature a varying number of butylsulfo substituents were synthesized and attached to a DNA-HJ via a covalent linker to form adjacent and transverse dimers. Various characteristics of the dye, including its hydrophilicity (in terms of log Po/w) and surface area, and of the substituents, including their local bulkiness and electron withdrawing capacity, were quantified computationally. The orientation of and Jm,n between the dyes were estimated using a model based on Kühn-Renger-May theory to fit the absorption and circular dichroism spectra. The results suggested that adjacent dimer aggregates of all the non-chlorinated and of the most hydrophilic chlorinated SQ dyes exhibit heterogeneity; that is, they form a mixture of dimers subpopulations. A key finding of this work is that dyes with a higher hydrophilicity (lower log Po/w) formed dimers with smaller Jm,n and large center-to-center dye distance (Rm,n). Also, the results revealed that the position of the dye in the DNA-HJ template, that is, adjacent or transverse, impacted Jm,n. Lastly, we found that Jm,n between symmetrically substituted dyes was reduced by increasing the local bulkiness of the substituent. This work provides insights into how to maintain strong excitonic coupling and identifies challenges associated with heterogeneity, which will help to improve control of these dye aggregates and move forward their potential application as quantum information systems.


Assuntos
Ciclobutanos , DNA Cruciforme , Corantes Fluorescentes , Fenóis , Corantes Fluorescentes/química , Metodologias Computacionais , Teoria Quântica , DNA/química , Interações Hidrofóbicas e Hidrofílicas
6.
Antioxidants (Basel) ; 12(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38001766

RESUMO

Retinyl palmitate (RP) is a retinol ester with strong antioxidant and anti-inflammatory properties as an antiwrinkle agent. However, it has poor aqueous solubility and easily degrades into inactive forms for topical applications. Therefore, we developed chitosan-coated nanocapsules (ChiNCs) to encapsulate RP using a simple nanoprecipitation method for protection against physiological conditions and to enable deep skin penetration. The as-prepared RP-loaded nanocapsules (RP@ChiNCs) loaded with approximately 5 wt.% RP exhibited a hydrodynamic diameter of 86 nm and surface charge of 24 mV. They had adequate stability to maintain their physicochemical properties after lyophilization in a biological buffer. Notably, ChiNCs provided RP with remarkable protection against degradation for 4 weeks at 37 °C. Thus, RP@ChiNCs exhibited good antioxidant activity in situ for sufficiently long periods without considerable changes in their efficacy. Furthermore, ChiNCs enhanced the skin penetration of lipophilic RP based on the inherent nature of chitosan. RP@ChiNCs exhibited good in vitro antioxidant and anti-inflammatory effects without causing any cytotoxicity in dermal fibroblasts. Accordingly, they promoted cell proliferation in a wound-scratch test and enhanced collagen synthesis. These results suggest that RP@ChiNCs are promising candidates for cosmetic and biomedical applications.

7.
Biochemistry ; 62(22): 3234-3244, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37906841

RESUMO

Programmable self-assembly of dyes using DNA templates to promote exciton delocalization in dye aggregates is gaining considerable interest. New methods to improve the rigidity of the DNA scaffold and thus the stability of the molecular dye aggregates to encourage exciton delocalization are desired. In these dye-DNA constructs, one potential way to increase the stability of the aggregates is to create an additional covalent bond via photo-cross-linking reactions between thymines in the DNA scaffold. Specifically, we report an approach to increase the yield of photo-cross-linking reaction between thymines in the core of a DNA Holliday junction while limiting the damage from UV irradiation to DNA. We investigated the effect of the distance between thymines on the photo-cross-linking reaction yields by using linkers with different lengths to tether the dyes to the DNA templates. By comprehensively evaluating the photo-cross-linking reaction yields of dye-DNA aggregates using linkers with different lengths, we conclude that interstrand thymines tend to photo-cross-link more efficiently with short linkers. A higher cross-linking yield was achieved due to the shorter intermolecular distance between thymines influenced by strong dye-dye interactions. Our method establishes the possibility of improving the stability of DNA-scaffolded dye aggregates, thereby expanding their use in exciton-based applications such as light harvesting, nanoscale computing, quantum computing, and optoelectronics.


Assuntos
DNA Cruciforme , Timina , Metodologias Computacionais , Teoria Quântica , DNA/química , Corantes
8.
Phys Chem Chem Phys ; 25(41): 28437-28451, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843877

RESUMO

A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética , Complexos de Proteínas Captadores de Luz/química , Metodologias Computacionais , Teoria Quântica , Complexo de Proteínas do Centro de Reação Fotossintética/química , DNA
9.
J Acoust Soc Am ; 154(1): 141-151, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432051

RESUMO

Direction-of-arrival estimation is difficult for signals spatially undersampled by more than half the wavelength. Frequency-difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029] offers an alternative approach to avoid such spatial aliasing by using multifrequency signals and processing them at a lower frequency, the difference-frequency. As with the conventional beamforming method, lowering the processing frequency sacrifices spatial resolution due to a beam broadening. Thus, unconventional beamforming is detrimental to the ability to distinguish between closely spaced targets. To overcome spatial resolution deterioration, we propose a simple yet effective method by formulating the frequency-difference beamforming as a sparse signal reconstruction problem. Similar to compressive beamforming, the improvement (compressive frequency-difference beamforming) promotes sparse nonzero elements to obtain a sharp estimate of the spatial direction-of-arrival spectrum. Analysis of the resolution limit demonstrates that the proposed method outperforms the conventional frequency-difference beamforming in terms of separation if the signal-to-noise ratio exceeds 4 dB. Ocean data from the FAF06 experiment support the validity.

10.
J Am Chem Soc ; 145(30): 16691-16703, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487322

RESUMO

DNA strand displacement networks are a critical part of dynamic DNA nanotechnology and are proven primitives for implementing chemical reaction networks. Precise kinetic control of these networks is important for their use in a range of applications. Among the better understood and widely leveraged kinetic properties of these networks are toehold sequence, length, composition, and location. While steric hindrance has been recognized as an important factor in such systems, a clear understanding of its impact and role is lacking. Here, a systematic investigation of steric hindrance within a DNA toehold-mediated strand displacement network was performed through tracking kinetic reactions of reporter complexes with incremental concatenation of steric moieties near the toehold. Two subsets of steric moieties were tested with systematic variation of structures and reaction conditions to isolate sterics from electrostatics. Thermodynamic and coarse-grained computational modeling was performed to gain further insight into the impacts of steric hindrance. Steric factors yielded up to 3 orders of magnitude decrease in the reaction rate constant. This pronounced effect demonstrates that steric moieties can be a powerful tool for kinetic control in strand displacement networks while also being more broadly informative of DNA structural assembly in both DNA-based therapeutic and diagnostic applications that possess elements of steric hindrance through DNA functionalization with an assortment of chemistries.


Assuntos
DNA , Nanotecnologia , DNA/química
11.
J Phys Chem A ; 127(23): 4901-4918, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37261888

RESUMO

Aggregates of conjugated organic molecules (i.e., dyes) may exhibit relatively large one- and two-exciton interaction energies, which has motivated theoretical studies on their potential use in quantum information science (QIS). In practice, one way of realizing large one- and two-exciton interaction energies is by maximizing the transition dipole moment (µ) and difference static dipole moment (Δd) of the constituent dyes. In this work, we characterized the electronic structure and excited-state dynamics of monomers and aggregates of four asymmetric polymethine dyes templated via DNA. Using steady-state and time-resolved absorption and fluorescence spectroscopy along with quantum-chemical calculations, we found the asymmetric polymethine dye monomers exhibited a large µ, an appreciable Δd, and a long excited-state lifetime (τp). We formed dimers of all four dyes and observed that one dye, Dy 754, displayed the strongest propensity for aggregation and exciton delocalization. Motivated by these results, we undertook a more comprehensive survey of Dy 754 dimer and tetramer aggregates using steady-state absorption and circular dichroism spectroscopy. Modeling these spectra revealed an appreciable excitonic hopping parameter (J). Lastly, we used femtosecond transient absorption spectroscopy to characterize τp of the dimer and tetramer, which we observed to be exceedingly short. This work revealed that asymmetric polymethine dyes exhibited µ, Δd, monomer τp, and J values promising for QIS; however, further work is needed to overcome excited-state quenching and achieve long aggregate τp.

12.
J Phys Chem B ; 127(20): 4470-4479, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37191170

RESUMO

Biosensing using aptamers has been a recent interest for their versatility in detecting many different analytes across a wide range of applications, including medical and environmental applications. In our last work, we introduced a customizable aptamer transducer (AT) that could successfully feed-forward many different output domains to target a variety of reporters and amplification reaction networks. In this paper, we explore the kinetic behavior and performance of novel ATs by modifying the aptamer complementary element (ACE) chosen based on a technique for exploring the ligand-binding landscape of duplexed aptamers. Using published data, we selected and constructed several modified ATs that contain ACEs with varying length, position of the start sites, and position of single mismatches, whose kinetic responses were tracked with a simple fluorescence reporter. A kinetic model for ATs was derived and used to extract the strand-displacement reaction constant k1 and the effective aptamer dissociation constant Kd,eff, allowing us to calculate a relative performance metric, k1/Kd,eff. Comparing our results with the predictions based on the literature data, we provide useful insight into the dynamics of the adenosine AT's duplexed aptamer domain and suggest a high-throughput approach for future ATs to be developed with improved sensitivity. The performance of our ATs showed a moderate correlation to those predicted by the ACE scan method. Here, we find that predicted performance based on our ACE selection method was moderately correlated to our AT's performance.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Adenosina , Técnicas Biossensoriais/métodos
13.
Nanoscale ; 15(7): 3284-3299, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723027

RESUMO

Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.


Assuntos
Corantes , DNA , DNA/química , Carbocianinas/química , DNA Cruciforme
14.
J Phys Chem A ; 127(5): 1141-1157, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36705555

RESUMO

Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized. The dyes were covalently tethered to DNA Holliday junctions to suppress aggregation and permit characterization of their monomer photophysics. A combination of density functional theory and steady-state absorption spectroscopy shows that the difference static dipole moment (Δd) successively increases with the addition of these substituents while simultaneously maintaining a large transition dipole moment (µ). Steady-state fluorescence and time-resolved absorption and fluorescence spectroscopies uncover a significant nonradiative decay pathway in the asymmetrically substituted dyes that drastically reduces their excited-state lifetime (τ). This work indicates that Δd can indeed be increased by functionalizing dyes with electron donating and withdrawing substituents and that, in certain classes of dyes such as these asymmetric squaraines, strategies may be needed to ensure long τ, e.g., by rigidifying the π-conjugated network.

15.
J Phys Chem Lett ; 13(46): 10688-10696, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36355575

RESUMO

While only one enantiomer of chiral biomolecules performs a biological function, access to both enantiomers (or enantiomorphs) proved to be advantageous for technology. Using dye covalent attachment to a DNA Holliday junction (HJ), we created two pairs of dimers of bis(chloroindolenine)squaraine dye that enabled strongly coupled molecular excitons of opposite chirality in solution. The exciton chirality inversion was achieved by interchanging single covalent linkers of unequal length tethering the dyes of each dimer to the HJ core. Dimers in each pair exhibited profound exciton-coupled circular dichroism (CD) couplets of opposite signs. Dimer geometries, modeled by simultaneous fitting absorption and CD spectra, were related in each pair as nonsuperimposable and nearly exact mirror images. The origin of observed exciton chirality inversion was explained in the view of isomerization of the stacked Holliday junction. This study will open new opportunities for creating excitonic DNA-based materials that rely on programmable system chirality.


Assuntos
Corantes , DNA Cruciforme , DNA , Dicroísmo Circular , Estereoisomerismo
16.
J Phys Chem C Nanomater Interfaces ; 126(40): 17164-17175, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36268205

RESUMO

Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.

17.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235149

RESUMO

Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates.


Assuntos
Perileno , DNA , DNA Cruciforme , Imidas/química , Uracila
18.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807250

RESUMO

A DNA Holliday junction (HJ) has been used as a versatile scaffold to create a variety of covalently templated molecular dye aggregates exhibiting strong excitonic coupling. In these dye-DNA constructs, one way to attach dyes to DNA is to tether them via single long linkers to thymine modifiers incorporated in the core of the HJ. Here, using photoinduced [2 + 2] cycloaddition (photocrosslinking) between thymines, we investigated the relative positions of squaraine-labeled thymine modifiers in the core of the HJ, and whether the proximity of thymine modifiers correlated with the excitonic coupling strength in squaraine dimers. Photocrosslinking between squaraine-labeled thymine modifiers was carried out in two distinct types of configurations: adjacent dimer and transverse dimer. The outcomes of the reactions in terms of relative photocrosslinking yields were evaluated by denaturing polyacrylamide electrophoresis. We found that for photocrosslinking to occur at a high yield, a synergetic combination of three parameters was necessary: adjacent dimer configuration, strong attractive dye-dye interactions that led to excitonic coupling, and an A-T neighboring base pair. The insight into the proximity of dye-labeled thymines in adjacent and transverse configurations correlated with the strength of excitonic coupling in the corresponding dimers. To demonstrate a utility of photocrosslinking, we created a squaraine tetramer templated by a doubly crosslinked HJ with increased thermal stability. These findings provide guidance for the design of HJ-templated dye aggregates exhibiting strong excitonic coupling for exciton-based applications such as organic optoelectronics and quantum computing.


Assuntos
Corantes , Reagentes de Ligações Cruzadas , DNA Cruciforme , Timina , Corantes/química , Eletroforese em Gel Bidimensional , Fotoquímica , Timina/química
19.
Ann Dermatol ; 34(3): 206-211, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35721328

RESUMO

Background: Fibroblasts produce collagen molecules that support the structure of the skin. The decrease and hypersynthesis of collagen causes skin problems such as skin atrophy, wrinkles and scars. Objective: The purpose of this study is to investigate the mechanism of mitoxantrone on collagen synthesis in fibroblasts. Methods: Cultured fibroblasts were treated with mitoxantrone, and then collagen synthesis was confirmed by reverse transcription-polymerase chain reaction and Western blot. Results: Mitoxantrone inhibited the expression of type I collagen in fibroblasts at both the mRNA and protein levels. In the collagen gel contraction assay, mitoxantrone significantly inhibited gel contraction compared to the control group. Mitoxantrone inhibited transforming growth factor (TGF)-ß-induced phosphorylation of SMAD3. Finally, mitoxantrone inhibited the expression of LARP6, an RNA-binding protein that regulates collagen mRNA stability. Conclusion: These results suggest that mitoxantrone reduces collagen synthesis by inhibiting TGF-ß/SMAD signaling and LARP6 expression in fibroblasts, which can be developed as a therapeutic agent for diseases caused by collagen hypersynthesis.

20.
ACS Omega ; 7(13): 11002-11016, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415341

RESUMO

Cyanine dyes represent a family of organic fluorophores with widespread utility in biological-based applications ranging from real-time PCR probes to protein labeling. One burgeoning use currently being explored with indodicarbocyanine (Cy5) in particular is that of accessing exciton delocalization in designer DNA dye aggregate structures for potential development of light-harvesting devices and room-temperature quantum computers. Tuning the hydrophilicity/hydrophobicity of Cy5 dyes in such DNA structures should influence the strength of their excitonic coupling; however, the requisite commercial Cy5 derivatives available for direct incorporation into DNA are nonexistent. Here, we prepare a series of Cy5 derivatives that possess different 5,5'-substituents and detail their incorporation into a set of DNA sequences. In addition to varying dye hydrophobicity/hydrophilicity, the 5,5'-substituents, including hexyloxy, triethyleneglycol monomethyl ether, tert-butyl, and chloro groups were chosen so as to vary the inherent electron-donating/withdrawing character while also tuning their resulting absorption and emission properties. Following the synthesis of parent dyes, one of their pendant alkyl chains was functionalized with a monomethoxytrityl protective group with the remaining hydroxyl-terminated N-propyl linker permitting rapid, same-day phosphoramidite conversion and direct internal DNA incorporation into nascent oligonucleotides with moderate to good yields using a 1 µmole scale automated DNA synthesis. Labeled sequences were cleaved from the controlled pore glass matrix, purified by HPLC, and their photophysical properties were characterized. The DNA-labeled Cy5 derivatives displayed spectroscopic properties that paralleled the parent dyes, with either no change or an increase in fluorescence quantum yield depending upon sequence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA