Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171516, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458451

RESUMO

The hygroscopicity of PM2.5 particles plays an important role in PM2.5 haze in Northeast Asian countries by influencing particle growth and chemical composition. New particle formation (NPF) and atmospheric volatile organic compounds (VOCs) are factors that influence particle hygroscopicity. However, the lack of real-time hygroscopicity measurements has deterred the understanding of their effects on particle hygroscopicity. In this study, two intensive monitoring campaigns were conducted during the summer of 2021 and spring of 2022 using real-time aerosol instruments, including a humidified tandem differential mobility analyzer (HTDMA), in Seosan, Republic of Korea. The hygroscopicity parameter κ was calculated from the real-time HTDMA measurement data (κGf). The diurnal variations in κGf exhibited strong inverse linear correlations with the total concentration of VOCs (CTVOC) during the two campaigns. The higher atmospheric CTVOC in summer increased the growth rate of the particle diameter from 10 to 40 nm (6 nm/h) compared with that in spring (2.7 nm/h), resulting in a faster change in κGf for 40-nm particles in summer than in spring because of the increase in organic matter in the chemical compositions of particles. In addition, NPF events introduced additional tiny fresh particles into the atmosphere, which reduced the κGf of 40-nm particles and increased the intensity of the less hygroscopic peaks (κGf < 0.1) of κ-probability density functions (κ-PDF) in NPF days. However, 100-nm particles exhibited fewer changes in κGf than 40-nm particles, resulting in additional dominant hygroscopic peaks (κ âˆ¼ 0.2) of κ-PDFs in both NPF and non-NPF days. When κGf values measured in Seosan were compared with those in other Northeast Asian countries in the literature, the κ values for 40-nm particles were lower than those (κ > 0.2) measured in Beijing and Guangzhou, but those for 100-nm particles were close to those measured in the two cities.

2.
Environ Pollut ; 349: 123870, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38548153

RESUMO

Ulaanbaatar (UB), the fast-growing capital of Mongolia, is known for its world's worst level of particulate matter (PM) concentrations in winter. However, current anthropogenic emission inventories over the UB are based on data from more than fifteen years ago, and satellite observations are scarce because UB is in high latitudes. During the winter of 2020-21, the first period of the Fine Particle Research Initiative in East Asia considering the National Differences (FRIEND), several times higher concentrations of PM in UB compared to other urban sites in East Asia were observed but not reproduced with a chemical transport model mainly due to the underestimated anthropogenic emissions. Therefore, we devised a method for sequentially adjusting emissions based on the reactivity of PM precursors using ground observations. We scaled emission rates for the inert species (CO, elemental carbon (EC), and organic carbon (OC)) to reproduce their observed ambient concentrations, followed by SO2 to reproduce the concentration of SO42-, which was examined to have the least uncertainty based on the abundance of observed NH3, and finally NO and NH3 for NO3-, and NH4+. This improved estimation is compared to regional inventories for Asia and suggests more than an order of magnitude increase in anthropogenic emissions in UB. Using the improved emission inventory, we were able to successfully reproduce independent observation data on PM2.5 concentrations in UB in December 2021 from the U.S. Embassy. During the campaign period, we found more than 50% of the SO42-, NO3-, and NH4+ increased in UB due to the improvement could travel to Beijing, China (BJ), and about 20% of the SO42- could travel to Noto, Japan (NT), more than 3000 km away. Also, the anthropogenic emissions in UB can effectively increase OC, NO3-, and NH4+ concentrations in BJ when Gobi dust storms occur.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Estações do Ano , Poluentes Atmosféricos/análise , Mongólia , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/estatística & dados numéricos , Efeitos Antropogênicos
3.
Environ Pollut ; 348: 123834, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518971

RESUMO

Particulate matter with an aerodynamic diameter of 2.5 µm or less (PM2.5) harbors a diverse microbial community. To assess the ecological dynamics and potential health risks associated with airborne microorganisms, it is crucial to understand the factors influencing microbial communities within PM2.5. This study investigated the influence of abiotic parameters, including air pollutants, PM2.5 chemical composition (water-soluble ions and organics), and meteorological variables, on microbial communities in PM2.5 samples collected in Seoul during the spring season. Results revealed a significant correlation between air pollutants and water-soluble ions of PM2.5 with microbial α-diversity indices. Additionally, air pollutants exerted a dominant effect on the microbial community structure, with stronger correlations observed for fungi than bacteria, whereas meteorological variables including temperature, pressure, wind speed, and humidity exerted a limited influence on fungal α-diversity. Furthermore, the results revealed specific water-soluble ions, such as SO42-, NO3-, and NH4+, as important factors influencing fungal α-diversity, whereas K+ negatively correlated with both microbial α-diversity. Moreover, PM2.5 microbial diversity was affected by organic compounds within PM2.5, with fatty acids exhibited a positive correlation with fungal diversity, while dicarboxylic acids exhibited a negative correlation with it. Furthermore, network analysis revealed direct links between air pollutants and dominant bacterial and fungal genera. The air pollutants exhibited a strong correlation with bacterial genera, such as Arthrospira and Clostridium, and fungal genera, including Aureobasidium and Cladosporium. These results will contribute to our understanding of the ecological dynamics of airborne microorganisms and provide insights into the potential risks associated with PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Microbiota , Estações do Ano , Seul , Monitoramento Ambiental , Microbiologia do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Bactérias , Íons/análise , Água/análise
4.
Sci Total Environ ; 920: 170822, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38365024

RESUMO

Seoul has high PM2.5 concentrations and has not attained the national annual average standard so far. To understand the reasons, we analyzed long-term (2015-2021) hourly observations of aerosols (PM2.5, NO3-, NH4+, SO42-, OC, and EC) and gases (CO, NO2, and SO2) from Seoul and Baekryeong Island, a background site in the upwind region of Seoul. We applied the weather normalization method for meteorological conditions and a 3-dimensional chemical transport model, GEOS-Chem, to identify the effect of policy implementation and aerosol formation mechanisms. The monthly mean PM2.5 ranges between about 20 µg m-3 (warm season) and about 40 µg m-3 (cold season) at both sites, but the annual decreasing rates were larger at Seoul than at Baengnyeong (-0.7 µg m-3 a-1 vs. -1.8 µg m-3 a-1) demonstrating the effectiveness of the local air quality policies including the Special Act on Air Quality in the Seoul Metropolitan Area (SAAQ-SMA) and the seasonal control measures. The weather-normalized monthly mean data shows the highest PM2.5 concentration in March and the lowest concentration in August throughout the 7 years with NO3- accounting for about 40 % of the difference between the two months at both sites. Taking together with the GEOS-Chem model results, which reproduced the elevated NO3- in March, we concluded the elevated atmospheric oxidant level increases in HNO3 (which is not available from the observation) and the still low temperatures in March promote rapid production of NO3-. We used Ox (≡ O3 + NO2) from the observation and OH from the GEOS-Chem as a proxy for the atmospheric oxidant level which can be a source of uncertainty. Thus, direct observations of OH and HNO3 are needed to provide convincing evidence. This study shows that reducing HNO3 levels through atmospheric oxidant level control in the cold season can be effective in PM2.5 mitigation in Seoul.

5.
Chemosphere ; 349: 140794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008293

RESUMO

The contribution of ozonation to the formation of particulate nitrosodi-methylamine (NDMA) in the aqueous aerosol phase was investigated using measurement data from 2018 in Seoul, Republic of Korea and a box model. The correlation between the NDMA concentration and aerosol liquid water content and box model results showed that aqueous aerosol phase reactions, including nitrosation and ozonation, might contribute to the formation of NDMA. The concentration of NDMA and the ratio of O3/dimethylamine exhibited a negative correlation, suggesting that the contribution of ozonation to NDMA formation may not be significant. Furthermore, when the daily concentration of NDMA exceeded 10 ng/m3, the pH was 3.96 ± 0.48, indicating that the impact of ozonation on NDMA concentration might not be significant. To quantitatively investigate the contribution of ozonation, the ozonation mechanism that forms NDMA was included in the box model developed in our previous study. The model results showed that the ozonation contributed to the ambient concentration of NDMA (7.9 ± 3.8% (winter); 1.9 ± 3.0% (spring); 10.0 ± 0.77% (summer); 3.6 ± 7.3% (autumn)). It is estimated that the relatively higher O3/NOx ratio in summer (1.63 ± 0.69; 0.64 ± 0.52 (winter); 1.14 ± 0.92 (spring); 0.52 ± 0.54 (autumn)) could enhance ozonation and that relatively lower pH in summer (2.2 ± 0.4; 5.3 ± 1.2 (winter); 3.9 ± 1.2 (spring); 3.9 ± 0.7 (autumn)) could hinder nitrosation compared to that in other seasons.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Metilaminas , Água , Atmosfera , Aerossóis , Purificação da Água/métodos
6.
Toxics ; 11(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37755748

RESUMO

Soils contaminated with polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs), and dioxin-like (dl) polychlorinated biphenyls (PCBs), known as persistent organic pollutants (POPs), have garnered global attention because of their toxicity and persistence in the environment. The standard method for target analytes has been used; however, it is an obstacle in large-scale sample analysis due to the comprehensive sample preparation and high-cost instrumental analysis. Thus, analytical development of inexpensive methods with lower barriers to determine PCDDs/Fs and dl-PCBs in soil is needed. In this study, a one-step cleanup method was developed and validated by combining a multilayer silica gel column and Florisil micro-column followed by gas chromatography with triple quadrupole mass spectrometry (GC-QqQ-MS/MS). To optimize the separation and quantification of 17 PCDDs/Fs and 12 dl-PCBs in soils, the sample cleanup and instrumental conditions were investigated. For quantification method validation, spiking experiments were conducted to determine the linearity of the calibration, recovery, and method detection limit of PCDDs/Fs and dl-PCBs using isotopic dilution GC-QqQ-MS/MS. The applicability of the simultaneous determination of PCDDs/Fs and dl-PCBs was confirmed by the recovery of native target congeners and labeled surrogate congeners spiked into the quality-control and actual soil samples. The results were in good agreement with the requirements imposed by standard methods. The findings in this work demonstrated the high accessibility of the sample cleanup and analysis methods for the efficient determination of PCDDs/Fs and dl-PCBs in contaminated soils.

7.
Environ Res ; 239(Pt 1): 117217, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37775002

RESUMO

Marine organic aerosols play crucial roles in global climatic systems. However, their chemical properties and relationships with various potential organic sources still need clarification. This study employed high-resolution mass spectrometry to investigate the identity, origin, and transportation of organic aerosols in pristine Antarctic environments (King Sejong Station; 62.2°S, 58.8°W), where complex ocean-cryosphere-atmosphere interactions occur. First, we classified the aerosol samples into three clusters based on their air mass transport history. Next, we investigated the relationship between organic aerosols and their potential sources, including organic matter dissolved in the open ocean, coastal waters, and runoff waters. Cluster 1 (C1), in which the aerosols mainly originated from the open ocean area (i.e., pelagic zone-influenced), exhibited a higher abundance of lipid-like and protein-like organic aerosols than cluster 3 (C3), with ratios 1.8- and 1.6-times higher, respectively. In contrast, C3, characterized by longer air mass retention over sea ice and land areas (i.e., inshore-influenced), had higher lignin- and condensed aromatic structures (CAS)-like organic aerosols by 2.2- and 3.4-times compared to C1. Cluster 2 (C2) has intermediate characteristics between C1 and C3 concerning the chemical properties of the aerosols and air mass travel history. Notably, the chemical properties of the aerosols assigned to C1 are closely related to those of phytoplankton-derived organics enriched in the open ocean. In contrast, those of C3 are comparable to those of terrestrial plant-derived organics enriched in coastal and runoff waters. These findings help evaluate the source-dependent properties of organic aerosols in changing Antarctic environment.


Assuntos
Atmosfera , Camada de Gelo , Regiões Antárticas , Aerossóis , Lignina
8.
Sci Total Environ ; 901: 165917, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37527716

RESUMO

This paper presents comparative study on the composition and sources of PM2.5 in Ulaanbaatar, Beijing, and Seoul. Ultrahigh performance liquid chromatography (UPLC) combined with ultrahigh resolution mass spectrometry (UHR-MS) were employed to analyze 85 samples collected in winter. The obtained 340 spectra were interpreted with artificial neural network (ANN). PM2.5 mass concentrations in Ulaanbaatar were significantly higher than those in Beijing and Seoul. ANN based interpretation of UPLC UHR-MS data showed that aliphatic/lipid derived organo­sulfur compounds, polycyclic aromatic and organo­oxygen compounds were characteristic to Ulaanbaatar. Whereas, aliphatic/lipid-derived organo­oxygen compounds were major components in Beijing and Seoul. Aromatic organo­nitrogen compounds were the main contributors to differentiating the spectra obtained from Beijing from the other cities. Based on two-dimensional gas chromatography/high resolution mass spectrometric (GCxGC/HRMS) data, it was determined that the concentrations of the polycyclic aromatic hydrocarbon (PAH) and polycyclic aromatic sulfur heterocycle (PASH) containing sulfur were highest in Ulaanbaatar, followed by Beijing and Seoul. Coal/biomass combustion was identified as the primary source of contamination in Ulaanbaatar, while petroleum combustion was the main contributor to PM2.5 in Beijing and Seoul. The conclusion that diesel-powered heavy-duty trucks and buses are the main contributors to NOx emissions in Beijing is consistent with previous reports. This study provides a more comprehensive understanding of the composition and sources of PM2.5 in the three cities, with a focus on the differences in their atmospheric pollution profiles based on the UPLC UHR-MS and ANN analysis. It is notable that this study is the first to utilize this method on a large-scale sample set, providing a more detailed and molecular-level understanding of the compositional differences among PM2.5. Overall, the study contributes to a better understanding of the sources and composition of PM2.5 in Northeast Asia, which is essential for developing effective strategies to reduce air pollution and improve public health.

9.
J Environ Sci (China) ; 132: 43-55, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336609

RESUMO

The below-cloud aerosol scavenging process by precipitation is one of the most important mechanisms to remove aerosols from the atmosphere. Due to its complexity and dependence on both aerosol and raindrop sizes, wet scavenging process has been poorly treated, especially during the removal of fine particles. This makes the numerical simulation of below-cloud scavenging in large-scale aerosol models unrealistic. To consider the slip effects of submicron particles, a simplified expression for the diffusion scavenging was developed by approximating the Cunningham slip correction factor. The derived analytic solution was parameterized as a simple power function of rain intensity under the assumption of the lognormal size distribution of particles. The resultant approximated expression was compared to the observed data and the results of previous studies including a 3D atmospheric chemical transport model simulation. Compared with the default GEOS-Chem coefficient of 0.00106R0.61 and the observation-based coefficient of 0.0144R0.9268, the coefficient of a and b in Λm = aRb spread in the range of 0.0002- 0.1959 for a and 0.3261- 0.525 for b over a size distribution of GSD of 1.3-2.5 and a geometric mean diameter of 0.01- 2.5 µm. Overall, this study showed that the scavenging coefficient varies widely by orders of magnitude according to the size distribution of particles and rain intensity. This study also demonstrated that the obtained simplified expression could consider the theoretical approach of aerosol polydispersity. Our proposed analytic approach showed that results can be effectively applied for reduced computational burden in atmospheric modeling.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Simulação por Computador , Modelos Químicos , Aerossóis/análise , Chuva
10.
Sci Total Environ ; 878: 162969, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36958547

RESUMO

Sea spray aerosol (SSA) particles strongly influence clouds and climate but the potential impact of ocean microbiota on SSA fluxes is still a matter of active research. Here-by means of in situ ship-borne measurements-we explore simultaneously molecular-level chemical properties of organic matter (OM) in oceans, sea ice, and the ambient PM2.5 aerosols along a transect of 15,000 km from the western Pacific Ocean (36°13'N) to the Southern Ocean (75°15'S). By means of orbitrap mass spectrometry and optical characteristics, lignin-like material (24 ± 5 %) and humic material (57 ± 8 %) were found to dominate the pelagic Pacific Ocean surface, while intermediate conditions were observed in the Pacific-Southern Ocean waters. In the marine atmosphere, we found a gradient of features in the aerosol: lignin-like material (31 ± 9 %) dominating coastal areas and the pelagic Pacific Ocean, whereas lipid-like (23 ± 16 %) and protein-like (11 ± 10 %) OM controlled the sympagic Southern Ocean (sea ice-influence). The results of this study showed that the OM composition in the ocean, which changes with latitude, affects the OM in aerosol compositions in the atmosphere. This study highlights the importance of the global-scale OM monitoring of the close interaction between the ocean, sea ice, and the atmosphere. Sympagic primary marine aerosols in polar regions must be treated differently from other pelagic-type oceans.

11.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677835

RESUMO

The concentration of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been continually monitored since their toxicity became known, whereas nitro-PAHs (NPAHs) and oxy-PAHs (OPAHs), which are derivatives of PAHs by primary emissions or secondary formations in the atmosphere, have gained attention more recently. In this study, a method for the quantification of 18 NPAH and OPAH congeners in the atmosphere based on combined applications of gas chromatography coupled with chemical ionization mass spectrometry is presented. A high sensitivity and selectivity for the quantification of individual NPAH and OPAH congeners without sample preparations from the extract of aerosol samples were achieved using negative chemical ionization (NCI/MS) or positive chemical ionization tandem mass spectrometry (PCI-MS/MS). This analytical method was validated and applied to the aerosol samples collected from three regions in Northeast Asia-namely, Noto, Seoul, and Ulaanbaatar-from 15 December 2020 to 17 January 2021. The ranges of the method detection limits (MDLs) of the NPAHs and OPAHs for the analytical method were from 0.272 to 3.494 pg/m3 and 0.977 to 13.345 pg/m3, respectively. Among the three regions, Ulaanbaatar had the highest total mean concentration of NPAHs and OPAHs at 313.803 ± 176.349 ng/m3. The contribution of individual NPAHs and OPAHs in the total concentration differed according to the regional emission characteristics. As a result of the aerosol samples when the developed method was applied, the concentrations of NPAHs and OPAHs were quantified in the ranges of 0.016~3.659 ng/m3 and 0.002~201.704 ng/m3, respectively. It was concluded that the method could be utilized for the quantification of NPAHs and OPAHs over a wide concentration range.

12.
Environ Sci Technol ; 56(24): 17581-17590, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36459099

RESUMO

Although the particle phase state is an important property, there is scant information on it, especially, for real-world aerosols. To explore the phase state of fine mode aerosols (PM2.5) in two megacities, Seoul and Beijing, we collected PM2.5 filter samples daily from Dec 2020 to Jan 2021. Using optical microscopy combined with the poke-and-flow technique, the phase states of the bulk of PM2.5 as a function of relative humidity (RH) were determined and compared to the ambient RH ranges in the two cities. PM2.5 was found to be liquid to semisolid in Seoul but mostly semisolid to solid in Beijing. The liquid state was dominant on polluted days, while a semisolid state was dominant on clean days in Seoul. These findings can be explained by the aerosol liquid water content related to the chemical compositions of the aerosols at ambient RH; the water content of PM2.5 was much higher in Seoul than in Beijing. Furthermore, the overall phase states of PM2.5 observed in Seoul and Beijing were interrelated with the particle size distribution. The results of this study aid in a better understanding of the fundamental physical properties of aerosols and in examining how these are linked to PM2.5 in polluted urban atmospheres.


Assuntos
Poluentes Atmosféricos , Material Particulado , Pequim , Material Particulado/análise , Cidades , Poluentes Atmosféricos/análise , Tamanho da Partícula , Seul , Monitoramento Ambiental/métodos , Estações do Ano , Água , Aerossóis/análise , China
13.
Sci Total Environ ; 838(Pt 3): 156344, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654203

RESUMO

Atmospheric volatile organic compounds (VOCs) in Seoul, the capital of South Korea, have attracted increased attention owing to their emission, secondary formation, and human health risk. In this study, we collected 24 hourly samples once a month at an urban site in Seoul for a year (a total of 288 samples) using a sequential tube sampler. Analysis results revealed that toluene (9.08 ± 8.99 µg/m3) exhibited the highest annual mean concentration, followed by ethyl acetate (5.55 ± 9.09 µg/m3), m,p-xylenes (2.79 ± 4.57 µg/m3), benzene (2.37 ± 1.55 µg/m3), ethylbenzene (1.81 ± 2.27 µg/m3), and o-xylene (0.91 ± 1.47 µg/m3), indicating that these compounds accounted for 77.8-85.6% of the seasonal mean concentrations of the total (Σ59) VOCs. The concentrations of the Σ59 VOCs were statistically higher in spring and winter than in summer and fall because of meteorological conditions, and the concentrations of individual VOCs were higher during the daytime than nighttime owing to higher human activities during the daytime. The conditional bivariate probability function and concentration weighted trajectory analysis results suggested that domestic effects (e.g., vehicular exhaust and solvents) exhibited a dominant effect on the presence of VOCs in Seoul, as well as long-range atmospheric transport of VOCs. Further, the most important secondary organic aerosol formation potential (SOAFP) compounds included benzene, toluene, ethylbenzene, and m,p,o-xylenes, and the total SOAFP of nine VOCs accounted for 5-29% of the seasonal mean PM2.5 concentrations. The cancer and non-cancer risks of the selected VOCs were below the tolerable (1 × 10-4) and acceptable (Hazard quotient: HQ < 1) levels, respectively. Overall, this study highlighted the feasibility of the sequential sampling of VOCs and hybrid receptor modeling to further understand the source-receptor relationship of VOCs.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Benzeno/análise , China , Monitoramento Ambiental , Humanos , Seul , Tolueno/análise , Compostos Orgânicos Voláteis/análise , Xilenos/análise
14.
Environ Pollut ; 303: 119142, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292313

RESUMO

Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m3 and 0.65 ± 0.71 ng/m3, respectively) than Seoul (7.41 ± 13.59 ng/m3 and 0.24 ± 0.15 ng/m3, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 µg/m3) was higher than that in Seoul (6.20 ± 5.35 µg/m3) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 µmol/m3 (Seosan); 0.08 ± 0.01 µmol/m3 (Seoul)) and total nitric acid (0.09 ± 0.07 µmol/m3 (Seosan); 0.04 ± 0.02 µmol/m3 (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m3) only observed probably due to the higher LWC (>10 µg/m3) in Seosan. It implies that aqueous phase reactions involving NO2 and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.


Assuntos
Nitrosaminas , Poeira , Nitrosaminas/análise , República da Coreia , Seul , Água
15.
Artigo em Inglês | MEDLINE | ID: mdl-34574352

RESUMO

Increasingly detrimental effects of fine particulate matter (PM) have been observed in Northeast Asia owing to its rapid economic development. Previous studies have found that dust, combustion, and chemical reactions are the major sources of PM; nevertheless, the spatial configuration of land use and land cover, which is of most interest to planners and landscape architects, also influences the PM levels. Here, we attempted to unveil the relationship between PM and different types of land use cover (i.e., developed, agricultural, woody, grass, and barren lands) in 122 municipalities of Korea. Landscape ecology metrics were applied to measure the spatial configuration of land use pattern and spatial lag models by taking into account the transboundary nature of air pollution, allowing us to conclude the following regarding PM levels: (1) the size of land cover type matters, but their spatial configuration also determines the variations in PM levels; (2) the contiguity and proximity of landcover patches are important; (3) the patterns of grasslands (e.g., simple, compact, and cluster (with large patches) patterns) and woodlands (e.g., complex, contiguous, and cluster (with large patches) patterns) considered desirable for minimizing PM are dissimilar in terms of contiguity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Material Particulado/análise
16.
Environ Sci Technol ; 55(12): 7841-7849, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34041906

RESUMO

Seven nitrosamines and three nitramines in particulate matter with an aerodynamic diameter of less than or equal to 2.5 µm (PM2.5) collected in 2018 in Seoul, South Korea, were quantified. Annual mean concentrations of the sum of nitrosamines and nitramines were 9.81 ± 18.51 and 1.12 ± 0.70 ng/m3, respectively, and nitrosodi-methylamine (NDMA) and dimethyl-nitramine (DMN) comprised the largest portion of nitrosamines and nitramines, respectively. Statistical analyses such as non-parametric correlation analysis, positive matrix factorization, analysis of covariance, and orthogonal partial least squared discrimination analysis were carried out to identify contribution of the atmospheric reactions in producing NDMA and DMN. In addition, kinetic calculation using reaction information obtained from the previous chamber studies was performed to estimate concentrations of NDMA and DMN that might be produced from the atmospheric reactions. It was concluded that (1) the atmospheric reactions contributed to the concentrations of NDMA more than they did for those of DMN, (2) the contribution of atmospheric reactions to the concentrations of NDMA and DMN was significant due to high NO2 concentrations in winter, and (3) primary emissions predominantly affected the ambient concentrations of NDMA and DMN in spring, summer, and autumn.


Assuntos
Poluentes Atmosféricos , Nitrosaminas , Poluentes Atmosféricos/análise , Compostos de Anilina , Monitoramento Ambiental , Nitrobenzenos , Nitrosaminas/análise , Material Particulado/análise , República da Coreia , Seul
17.
Toxics ; 9(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920550

RESUMO

The quantification and identification of saccharides in pristine marine aerosols can provide useful information for determining the contributions of anthropogenic and natural sources of the aerosol. However, individual saccharide compounds in pristine marine aerosols that exist in trace amounts are difficult to analyze due to their low concentrations. Thus, in this study, we applied gas chromatography-tandem mass spectrometry (GC-MS/MS) in multiple reaction monitoring (MRM) mode to analyze the particulate matter with an aerodynamic diameter equal or less than 2.5 µm (PM2.5) samples, and the results were compared with those of conventional GC-MS. To investigate the chemical properties of pristine marine aerosols, 12 PM2.5 samples were collected while aboard Araon, an ice-breaking research vessel (IBRV), as it sailed from Incheon, South Korea to Antarctica. The method detection limits of GC-MS/MS for 10 saccharides were 2-22-fold lower than those of GC-MS. Consequently, the advantages of GC-MS/MS include (1) more distinct peak separations, enabling the accurate identification of the target saccharides and (2) the quantification of all individual saccharide compounds with concentrations outside the quantifiable range of GC-MS. Accordingly, the time resolution for sampling saccharides in pristine marine aerosols can be improved with GC-MS/MS.

18.
Chemosphere ; 258: 127367, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947676

RESUMO

Due to their important roles in salt-producing acid-base reactions, new particle formation (NPF), and as precursors in secondary organic aerosol (SOA) producing reactions, the atmospheric concentrations of particulate volatile amines (dimethylamine (DMA), ethylamine, diethylamine (DEA), propylamine, and butylamine) at Seoul were analyzed and evaluated. To quantify the presence of volatile amines in particulate matter with aerodynamic diameters less than or equal to a nominal 2.5 µm (PM2.5), an efficient and rapid analytical method based on in-matrix ethyl chloroformate (ECF) derivatization followed by headspace solid-phase microextraction (HS-SPME) was developed and validated using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) in the multiple reaction monitoring (MRM) mode. The annual mean concentration of the total 5 target amines was 5.56±2.76 ng/m3 and the seasonal difference was small. The concentrations of particulate amines measured in this study were lower than those observed in Zongludak, Turkey, Nanjing, China, and Jeju, Korea but slightly higher than that reported in Kobe, Japan. The concentrations of the nitrosamines (nitrosodimethylamine (NDMA) and nitrosodiethylamine (NDEA)), and of the nitramines (dimethylnitramine (DMN) and diethylnitramine (DEN)) measured along with those of the target amines were used in a simple linear regression analysis. It indicates the contribution of DMA to the formation of NDMA in all seasons (except the fall) and DEA to the formation of NDEA in the summer, while DMA and DEA did not significantly contribute to the formation of nitramines.


Assuntos
Poluentes Atmosféricos/análise , Aminas/análise , Monitoramento Ambiental , China , Dietilnitrosamina , Dimetilaminas , Dimetilnitrosamina/análise , Etilaminas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitrosaminas/análise , Material Particulado/análise , República da Coreia , Seul , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem
19.
Part Fibre Toxicol ; 17(1): 25, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527278

RESUMO

BACKGROUND: Epidemiologic studies have suggested that elevated concentrations of particulate matter (PM) are strongly associated with an increased risk of developing cardiovascular diseases, including arrhythmia. However, the cellular and molecular mechanisms by which PM exposure causes arrhythmia and the component that is mainly responsible for this adverse effect remains to be established. In this study, the arrhythmogenicity of mobilized organic matter from two different types of PM collected during summer (SPM) and winter (WPM) seasons in the Seoul metropolitan area was evaluated. In addition, differential effects between polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (oxy-PAHs) on the induction of electrophysiological instability were examined. RESULTS: We extracted the bioavailable organic contents of ambient PM, measuring 10 µm or less in diameter, collected from the Seoul metropolitan area using a high-volume air sampler. Significant alterations in all factors tested for association with electrophysiological instability, such as intracellular Ca2+ levels, reactive oxygen species (ROS) generation, and mRNA levels of the Ca2+-regulating proteins, sarcoplasmic reticulum Ca2+ATPase (SERCA2a), Ca2+/calmodulin-dependent protein kinase II (CaMK II), and ryanodine receptor 2 (RyR2) were observed in cardiomyocytes treated with PM. Moreover, the alterations were higher in WPM-treated cardiomyocytes than in SPM-treated cardiomyocytes. Three-fold more oxy-PAH concentrations were observed in WPM than SPM. As expected, electrophysiological instability was induced higher in oxy-PAHs (9,10-anthraquinone, AQ or 7,12-benz(a) anthraquinone, BAQ)-treated cardiomyocytes than in PAHs (anthracene, ANT or benz(a) anthracene, BaA)-treated cardiomyocytes; oxy-PAHs infusion of cells mediated by aryl hydrocarbon receptor (AhR) was faster than PAHs infusion. In addition, ROS formation and expression of calcium-related genes were markedly more altered in cells treated with oxy-PAHs compared to those treated with PAHs. CONCLUSIONS: The concentrations of oxy-PAHs in PM were found to be higher in winter than in summer, which might lead to greater electrophysiological instability through the ROS generation and disruption of calcium regulation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Oxigênio/química , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Atmosféricos/química , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Peroxidação de Lipídeos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Tamanho da Partícula , Material Particulado/química , Técnicas de Patch-Clamp , Hidrocarbonetos Policíclicos Aromáticos/química , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Estações do Ano , Seul
20.
Artigo em Inglês | MEDLINE | ID: mdl-32098187

RESUMO

Polycyclic Aromatic Hydrocarbons (PAHs) and n-alkanes in particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) were quantified at Seoul, Korea in 2018. The seasonal differences in the total concentration of PAHs and n-Alkanes were clear, where winter showed a higher concentration than that of summer. Compared to the PAHs measurements in 2002 at Seoul, the sum of PAHs concentrations in 2018 were reduced from 26.6 to 5.6 ng m-3. Major sources of the observed PAHs and n-alkanes were deduced from various indicators such as diagnostic ratios for PAHs and Cmax, CPI, and WNA (%) indices for n-alkanes. It was found that in winter coal and biomass combustions, and vehicular exhaust were major sources, while, in summer vehicular exhaust was major source. In addition, in winter, major emission sources were located outside of Seoul. The health effect from the recent level of PAHs was estimated and compared to the previous studies observed in Seoul, and it was found that, recently, the toxicity of PAHs in PM2.5 was significantly decreased, except for in the winter.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Alcanos , China , Monitoramento Ambiental , Humanos , Material Particulado , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , República da Coreia , Estações do Ano , Seul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA