Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1045239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544872

RESUMO

In this study, we determined the short-term effects of ozone exposure on the growth and accumulation of bioactive compounds in red lettuce leaves grown in a controlled environment plant factory with artificial light, also known as a vertical farm. During cultivation, twenty-day-old lettuce (Lactuca sativa L. var. Redfire) seedlings were exposed to 100 and 200 ppb of ozone concentrations for 72 h. To find out how plants react to ozone and light, complex treatments were done with light and ozone concentrations (100 ppb; 16 h and 200 ppb; 24 h). Ozone treatment with 100 ppb did not show any significant difference in shoot fresh weight compared to that of the control, but the plants exposed to the 200 ppb treatment showed a significant reduction in fresh weight by 1.3 fold compared to the control. The expression of most genes in lettuce plants exposed to 100 and 200 ppb of ozone increased rapidly after 0.5 h and showed a decreasing trend after reaching a peak. Even when exposed to a uniform ozone concentration, the pattern of accumulating bioactive compounds such as total phenolics, antioxidant capacity and total flavonoids varied based on leaf age. At a concentration of 200 ppb, a greater accumulation was found in the third (older) leaf than in the fourth leaf (younger). The anthocyanin of lettuce plants subjected to 100 and 200 ppb concentrations increased continuously for 48 h. Our results suggest that ozone control is a novel method that can effectively increase the accumulation of bioactive compounds in lettuce in a plant factory.

2.
Plants (Basel) ; 11(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807684

RESUMO

The application of ultraviolet-B (UV-B) irradiation to supplement visible light as an elicitor to increase bioactive compounds under controlled conditions is increasing. This study aimed to evaluate the effects of UV-B dose and wavelength region (280−300 and 300−320 nm) on the morphological, physiological, and biochemical responses of canola plants (Brassica napus L.). Canola plants (17 days after sowing) were subjected to various UV-B intensities (i.e., 0.3, 0.6, and 0.9 W m−2) and were divided into cut and non-cut treatments for each UV treatment. Plant growth parameters exhibited different trends based on the treated UV irradiation intensity. Plant growth gradually decreased as the UV irradiation intensity and exposure time increased. Despite the same UV irradiation intensity, plant response varied significantly depending on the presence or absence of a short-wavelength cut filter (<300 nm). Canola plants suffered more leaf damage in nonfilter treatments containing shorter wavelengths (280−300 nm). UV treatment effectively activates the expression of secondary metabolite biosynthetic genes, differing depending on the UV irradiation intensity. Our results suggest that both UV irradiation intensity and wavelength should be considered when enhancing antioxidant phytochemicals without inhibiting plant growth in a plant factory with artificial light.

3.
PLoS One ; 16(4): e0249748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848304

RESUMO

A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.


Assuntos
Gânglios Espinais/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/metabolismo , Via de Sinalização Wnt , Animais , Modelos Animais de Doenças , Feminino , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Humanos , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Wistar , Nervo Isquiático/patologia , Células Receptoras Sensoriais/patologia
4.
Front Plant Sci ; 12: 786555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003173

RESUMO

This study aimed to evaluate short-duration (24 h) UV-B irradiation as a preharvest abiotic stressor in canola plants. Moreover, we quantified the expression levels of genes related to bioactive compounds synthesis in response to UV-B radiation. Canola seedlings were cultivated in a plant factory under artificial light (200 µmol m-2 s-1 photosynthetic photon flux density; white LED lamps; 16 h on/8 h off), 25°C/20°C daytime/nighttime air temperature, and 70% relative humidity. Eighteen days after sowing, the seedlings were subjected to supplemental UV-B treatment. The control plants received no UV-B irradiation. The plants were exposed to 3, 5, or 7 W m-2 UV-B irradiation. There were no significant differences in shoot fresh weight between the UV-B-irradiated and control plants. With increasing UV-B irradiation intensity and exposure time, the H2O2 content gradually increased, the expression levels of genes related to photosynthesis downregulated, and phenylpropanoid and flavonoid production, and also total phenolic, flavonoid, antioxidant, and anthocyanin concentrations were significantly enhanced. The genes related to secondary metabolite biosynthesis were immediately upregulated after UV-B irradiation. The relative gene expression patterns identified using qRT-PCR corroborated the variations in gene expression that were revealed using microarray analysis. The time point at which the genes were induced varied with the gene location along the biosynthetic pathway. To the best of our knowledge, this is the first study to demonstrate a temporal difference between the accumulation of antioxidants and the induction of genes related to the synthesis of this compound in UV-B-treated canola plants. Our results demonstrated that short-term UV-B irradiation could augment antioxidant biosynthesis in canola without sacrificing crop yield or quality.

5.
Obes Facts ; 13(3): 375-385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32544907

RESUMO

INTRODUCTION: Gene expression profiles in human peripheral blood mononuclear cells (PBMCs) may act as a useful tool to better understand obesity. We investigated gene expression levels in PMBCs for possible differences between obese and non-obese subjects (19-55 years) and evaluated correlations between gene expression in PBMCs and clinical obesity indices. METHODS: Body weight, BMI, fat amount, fat percentage, waist/hip ratio, leptin, and adiponectin levels were determined in 30 obese and 20 non-obese subjects. Expression levels of 19 genes, which were differentially expressed by clinical obesity indices in the PBMCs of high fat-fed rats, were determined in their PBMCs using real-time PCR. RESULTS: The expression of 9 of 19 previously selected genes was significantly correlated with one or more clinical obesity indices. Both TFEC and CCL2 expression were negatively correlated with BMI, fat amount, fat percentage, waist/hip ratio, and leptin concentration. Similarly, TNFAIP2, VCAN, ASSI, IRF1, and HK3 expression negatively correlated with some clinical obesity indices, such as TNFAIP2 for BMI, fat amount, fat percentage, and waist/hip ratio, VCAN for fat amount, fat percentage, and waist/hip ratio, ASS1 for BMI and fat amount, IRF1 for BMI, fat amount, and fat percentage, and HK3 for fat amount. In contrast, both TNF-α and LPL expression were positively correlated with waist/hip ratio. CONCLUSION: We identified 9 of 19 genes in human PBMCs that significantly correlated with one or more clinical obesity indices. Because these genes have a mechanistic basis for the development or progression of obesity and its metabolic derangements, they may help to determine possible underlying mechanisms for obesity.


Assuntos
Leucócitos Mononucleares/metabolismo , Obesidade/genética , Adiponectina/sangue , Adulto , Animais , Índice de Massa Corporal , Peso Corporal , Feminino , Humanos , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Ratos , Transcriptoma , Relação Cintura-Quadril , Adulto Jovem
6.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597250

RESUMO

Short-term abiotic stress treatment before harvest can enhance the quality of horticultural crops cultivated in controlled environments. Here, we investigated the effects of combined chilling and UV-A treatment on the accumulation of phenolic compounds in kale (Brassica oleracea var. acephala). Five-week-old plants were subjected to combined treatments (10 °C plus UV-A LED radiation at 30.3 W/m2) for 3-days, as well as single treatments (4 °C, 10 °C, or UV-A LED radiation). The growth parameters and photosynthetic rates of plants under the combined treatment were similar to those of the control, whereas UV-A treatment alone significantly increased these parameters. Maximum quantum yield (Fv/Fm) decreased and H2O2 increased in response to UV-A and combined treatments, implying that these treatments induced stress in kale. The total phenolic contents after 2- and 3-days of combined treatment and 1-day of recovery were 40%, 60%, and 50% higher than those of the control, respectively, and the phenylalanine ammonia-lyase activity also increased. Principal component analysis suggested that stress type and period determine the changes in secondary metabolites. Three days of combined stress treatment followed by 2-days of recovery increased the contents of quercetin derivatives. Therefore, combined chilling and UV-A treatment could improve the phenolic contents of leafy vegetables such as kale, without growth inhibition.


Assuntos
Adaptação Biológica , Brassica/fisiologia , Brassica/efeitos da radiação , Temperatura Baixa , Metaboloma , Metabolômica , Raios Ultravioleta , Clorofila/metabolismo , Cromatografia Líquida de Alta Pressão , Metabolismo Energético/efeitos da radiação , Flavonóis/metabolismo , Metaboloma/efeitos da radiação , Metabolômica/métodos , Fenóis/metabolismo , Fotossíntese/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
7.
Front Plant Sci ; 10: 1042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481968

RESUMO

The aim of this study was to determine the influence of two types of UV-A LEDs on the growth and accumulation of phytochemicals in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were transferred to a growth chamber and cultivated for 3 weeks. The kale plants were subsequently subjected to two types of UV-A LEDs (370 and 385 nm) of 30 W/m2 for 5 days. Growth characteristics were all significantly increased in plants exposed to UV-A LEDs, especially at the 385 nm level, for which dry weight of shoots and roots were significantly increased by 2.22 and 2.5 times, respectively, at 5 days of treatment. Maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ratio) began to decrease after 3 h of treatment compared to the control. The total phenolic content of plants exposed to the two types of UV-A LEDs increased by 25% at 370 nm and 42% at 385 nm at 5 days of treatment, and antioxidant capacity also increased. The two types of UV-A LEDs also induced increasing contents of caffeic acid, ferulic acid, and kaempferol. The reactive oxygen species (ROS) temporarily increased in plants exposed to the two types of UV-A LEDs after 3 h of treatment. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) genes and PAL enzyme activity were higher in plants treated with UV-A LEDs. Our results suggested that short-term UV-A LEDs were effective in increasing growth and improving antioxidant phenolic compounds in kale, thereby representing a potentially effective strategy for enhancing the production of phytochemicals.

8.
Int J Mol Sci ; 18(8)2017 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-28805698

RESUMO

This study aimed to examine the protective effect of Artemisia iwayomogi extract (AI) against hypertriglyceridemia induced by a high-fat diet (HFD) in mice and to uncover the underlying molecular mechanisms. C57BL/6N mice were fed chow, HFD, HFD + 0.1% AI, HFD + 0.25% AI, or HFD + 0.5% AI for 10 weeks. The addition of 0.25% and 0.5% AI resulted in dose-dependent improvements in the major parameters of hypertriglyceridemia, including plasma triglyceride, free fatty acids, apolipoprotein B, and lipoprotein lipase, with parallel reductions in body weight gain, hepatic lipid accumulation, and insulin resistance. These beneficial effects were accompanied by the activation of adiponectin-adenosine monophosphate-activated protein kinase (AMPK) mediated signaling cascades in the liver, which downregulated molecules involved in lipogenesis and concurrently upregulated molecules related to fatty acid oxidation. The downregulation of molecules involved in very low density lipoprotein assembly, which was associated with improved hepatic insulin signaling, also appeared to contribute to the AI-induced attenuation of hypertriglyceridemia.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Artemisia , Hipertrigliceridemia/tratamento farmacológico , Lipoproteínas VLDL/metabolismo , Fígado/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Artemisia/química , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Hipertrigliceridemia/etiologia , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/patologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
J Biomed Opt ; 19(1): 011018, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24192777

RESUMO

Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.


Assuntos
Autofagia/fisiologia , Vírus da Dengue/fisiologia , Dengue/virologia , Imagem Molecular/métodos , Adenina/análogos & derivados , Adenina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Vírus da Dengue/química , Vírus da Dengue/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Fagossomos , Sirolimo/farmacologia , Vírion/química , Vírion/patogenicidade , Vírion/fisiologia
10.
Environ Toxicol Chem ; 29(5): 1025-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20821536

RESUMO

A trace uranium (U) detection method was developed with a handheld voltammetric analyzer that was the size of a mobile phone, with working sensors made of simple graphite pencil electrode (PE). The optimum stripping voltammetric conditions were sought, and the following results were obtained: 0.0 to 0.08 ng/L working ranges and a statistically relative standard deviation of 1.78% (RSD; n=15) at a 10.0 microg/L U spike. The experiment accumulation time used was only 150 s. Under this condition, the diagnostic detection limit approached 0.007 ng/L. The method was applied to soil of a natural rock in a radioactive mineralogy site. Earthworms that resided at this site were assayed. The method was found to be applicable in biological diagnosis or in real-time in vivo survey.


Assuntos
Eletroquímica/instrumentação , Monitoramento Ambiental/instrumentação , Urânio/química , Poluentes Radioativos da Água/química , Animais , Eletroquímica/métodos , Eletrodos , Monitoramento Ambiental/métodos , Oligoquetos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA