RESUMO
Staphylococcus aureus poses significant risks to public health due to its ability to form biofilm and produce virulence factors, contributing to the increase in antibiotic resistance and treatment complications. This emphasizes the urgent need for novel antimicrobial controls. Based on the premise that halogenation improves antimicrobial efficacy, this study investigated the ability of halogenated phenylalanine to effectively inhibit S. aureus biofilm formation and virulence activities. Among 29 halogenated compounds, Fmoc-4-iodo-phenylalanine (Fmoc-Iodo-Phe) displayed the highest antibiofilm effect against S. aureus, achieving 94.3 % reduction at 50 µg/mL. Microscopic studies confirmed its ability to prevent and disrupt mature biofilms. At 10 µg/mL, Fmoc-Iodo-Phe markedly inhibited virulence factors, such as cell surface hydrophobicity, hemolysin and slime production. It showed low propensity for resistance development and effectively inhibited biofilms formed by methicillin-resistant S. aureus (MRSA) and S. epidermidis, but was inactive against Gram-negative bacteria. Gene expression analysis complemented by molecular docking suggest that Fmoc-Iodo-Phe could target the AgrA quorum sensing cascade due to strong interactions with key residues at its DNA binding sites. Notably, it was non-cytotoxic in Caenorhabditis elegans model and satisfied drug-likeliness criteria based on ADMET prediction. Therefore, our findings position Fmoc-Iodo-Phe as a promising antimicrobial candidate against S. aureus infections, underscoring its potential as an alternative to traditional antibiotics.
RESUMO
Objectives: Data breaches are a financial and operational threat to hospitals. In this study, we examine the association between a data breach and information technology capital and labor investment. Methods: In this retrospective cohort study, we used American Hospital Association data from 2017 to 2019 and an unbalanced panel of hospitals with 6751 unique hospital-year observations. The breached group had 482 hospital-years, and the control group had 6269 hospital-years. We estimated the association between data breaches, information technology capital, and labor investment using the average treatment effect with propensity-score matching. Results: From 2017 to 2019, hospitals experienced more hacking and information technology incidents but fewer thefts and losses. We found that hospital data breaches were associated with a 66% increase in employed information technology staff and a 57% increase in outsourced information technology staff. Breaches were not associated with information technology operating expenses and information technology capital expenses. Conclusion: Higher information technology labor investment due to the remediation of data breaches is an added cost to the healthcare system. Hospitals and policymakers should consider initiatives to improve cybersecurity and protect patient data.
RESUMO
Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a novel flavonoid capable of effectively inhibiting biofilm formation and virulence factor production in S. aureus strains including MRSA. Among the 19 flavonoid-like compounds tested, 3,2'-dihydroxyflavone (3,2'-DHF) was identified for the first time as inhibiting biofilm formation and virulence factors in S. aureus with an MIC 75 µg/mL. The antibiofilm activity was further confirmed by microscopic methods. Notably, 3,2'-DHF at 5 µg/mL was effective in inhibiting both mono- and polymicrobial biofilms involving S. aureus and Candida albicans, a common co-pathogen. 3,2'-DHF reduces hemolytic activity, slime production, and the expression of key virulence factors such as hemolysin gene hla and nuclease gene nuc1 in S. aureus. These findings highlight the potential of 3,2'-DHF as a novel antibiofilm and antivirulence agent against both bacterial and fungal biofilms, offering a promising alternative to traditional antibiotics in the treatment of biofilm-associated infections.
Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Antibacterianos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Flavonas/farmacologia , Flavonoides/farmacologia , Virulência/efeitos dos fármacos , HumanosRESUMO
Staphylococcus aureus biofilm formation is a pivotal mechanism in the development of drug resistance, conferring resilience against conventional antibiotics. This study investigates the inhibitory effects of Actinostemma lobatum (A. lobatum) Maxim extracts on S. aureus biofilm formation and their antihemolytic activities, with a particular focus on identifying the active antibiofilm and antihemolysis compound, quercetin. Seven solvent extracts and twelve sub-fractions were evaluated against four S. aureus strains. The ethyl acetate fraction (10 to 100 µg/mL) significantly hindered biofilm formation by both methicillin-sensitive and -resistant strains. Bioassay-guided isolation of the ethyl acetate extract identified quercetin as the major antibiofilm compound. The ethyl acetate extract was found to contain 391 µg/mg of quercetin and 30 µg/mg of kaempferol. Additionally, the A. lobatum extract exhibited antihemolytic activity attributable to the presence of quercetin. The findings suggest that quercetin-rich extracts from A. lobatum and other quercetin-rich foods and plants hold promise for inhibiting resilient S. aureus biofilm formation and attenuating its virulence.
RESUMO
Effective management of microbial biofilms holds significance within food and medical environments. Candida albicans, an opportunistic fungus, forms mucosal biofilms closely linked to candidiasis and drug-resistant infections due to their drug tolerance. Morphologic change from yeast to filamentous cells is a key virulence factor and a prerequisite for biofilm development. This study investigated the anti-fungal and antibiofilm activities of 20 flavonoids against C. albicans. With their known antioxidant capabilities, flavonoids hold promise in combating infections associated with biofilms. Among them, flavone and its derivatives exhibited moderate antifungal activity, 3,2'-dihydroxyflavone (3,2'-DHF) at 1 µg/mL exhibited strong antibiofilm activity (MIC 50 µg/mL). In addition, 3,2'-DHF dramatically inhibited cell aggregation and germ tube/hyphae formation. Transcriptomic analyses revealed that flavone and 3,2'-DHF behaved differently, as 3,2'-DHF downregulated the expressions of germ tube/hyphae-forming and biofilm-related genes (ECE1, HWP1, TEC1, and UME6) but upregulated the biofilm/hyphal regulators (CHK1, IFD6, UCF1, and YWP1). Tests evaluating toxicity with plant and nematode models revealed that flavone and 3,2'-DHF exhibited mild toxicity. Current results indicate that hydroxylated flavone derivatives can enhance anti-fungal and antibiofilm activities and provide a source of potential anti-fungal agents against drug-resistant C. albicans.
RESUMO
Candida species comprise a ubiquitous pathogenic fungal genus responsible for causing candidiasis. They are one of the primary causatives of several mucosal and systemic infections in humans and can survive in various environments. In this study, we investigated the antifungal, anti-biofilm, and anti-hyphal effects of six N-substituted phthalimides against three Candida species. Of the derivatives, N-butylphthalimide (NBP) was the most potent, with a minimum inhibitory concentration (MIC) of 100 µg/ml and which dose-dependently inhibited biofilm at sub-inhibitory concentrations (10-50 µg/ml) in both the fluconazole-resistant and fluconazole-sensitive Candida albicans and Candida parapsilosis. NBP also effectively inhibited biofilm formation in other pathogens including uropathogenic Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus, and Vibrio parahaemolyticus, along with the polymicrobial biofilms of S. epidermidis and C. albicans. NBP markedly inhibited the hyphal formation and cell aggregation of C. albicans and altered its colony morphology in a dose-dependent manner. Gene expression analysis showed that NBP significantly downregulated the expression of important hyphal- and biofilm-associated genes, i.e., ECE1, HWP1, and UME6, upon treatment. NBP also exhibited mild toxicity at concentrations ranging from 2 to 20 µg/ml in a nematode model. Therefore, this study suggests that NBP has anti-biofilm and antifungal potential against various Candida strains.
Assuntos
Antifúngicos , Biofilmes , Candida albicans , Hifas , Testes de Sensibilidade Microbiana , Ftalimidas , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antifúngicos/farmacologia , Ftalimidas/farmacologia , Candida albicans/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Candida/efeitos dos fármacos , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Animais , Humanos , Candida parapsilosis/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fluconazol/farmacologiaAssuntos
Corioide , Angiofluoresceinografia , Descolamento Retiniano , Epitélio Pigmentado da Retina , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/etiologia , Descolamento Retiniano/cirurgia , Angiofluoresceinografia/métodos , Epitélio Pigmentado da Retina/patologia , Corioide/patologia , Corioide/anormalidades , Corioide/diagnóstico por imagem , Drusas Retinianas/diagnóstico , Drusas Retinianas/complicações , Drusas Retinianas/etiologia , Fundo de Olho , Acuidade Visual , Masculino , Doenças da Coroide/diagnóstico , Doenças da Coroide/etiologia , FemininoRESUMO
Staphylococcus aureus and Staphylococcus epidermidis stand as notorious threats to human beings owing to the myriad of infections they cause. The bacteria readily form biofilms that help in withstanding the effects of antibiotics and the immune system. Intending to combat the biofilm formation and reduce the virulence of the pathogens, we investigated the effects of carotenoids, crocetin, and crocin, on four Staphylococcal strains. Crocetin was found to be the most effective as it diminished the biofilm formation of S. aureus ATCC 6538 significantly at 50 µg/mL without exhibiting bactericidal effect (MIC >800 µg/mL) and also inhibited the formation of biofilm by MSSA 25923 and S. epidermidis at a concentration as low as 2 µg/mL, and that by methicillin-resistant S. aureus MW2 at 100 µg/mL. It displayed minimal to no antibiofilm efficacy on the Gram-negative strains Escherichia coli O157:H7 and Pseudomonas aeruginosa as well as a fungal strain of Candida albicans. It could also curb the formation of fibrils, which partly contributes to the biofilm formation in S. epidermidis. Additionally, the ADME analysis of crocetin proclaims how relatively non-toxic the chemical is. Also, crocetin displayed synergistic antibiofilm characteristics in combination with tobramycin. The presence of a polyene chain with carboxylic acid groups at its ends is hypothesized to contribute to the strong antibiofilm characteristics of crocetin. These findings suggest that using apocarotenoids, particularly crocetin might help curb the biofilm formation by S. aureus and S. epidermidis.
Assuntos
Antibacterianos , Biofilmes , Carotenoides , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis , Vitamina A , Biofilmes/efeitos dos fármacos , Carotenoides/farmacologia , Vitamina A/análogos & derivados , Vitamina A/farmacologia , Antibacterianos/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus/efeitos dos fármacosRESUMO
Vibrios are associated with live seafood because they are part of the indigenous marine microflora. In Asia, foodborne infections caused by Vibrio spp. are common. In recent years, V. parahaemolyticus has become the leading cause of all reported food poisoning outbreaks. Therefore, the halogenated acid and its 33 derivatives were investigated for their antibacterial efficacy against V. parahaemolyticus. The compounds 3,5-diiodo-2-methoxyphenylboronic acid (DIMPBA) and 2-fluoro-5-iodophenylboronic acid (FIPBA) exhibited antibacterial and antibiofilm activity. DIMPBA and FIPBA had minimum inhibitory concentrations of 100 µg/mL for the planktonic cell growth and prevented biofilm formation in a dose-dependent manner. Both iodo-boric acids could diminish the several virulence factors influencing the motility, agglutination of fimbria, hydrophobicity, and indole synthesis. Consequently, these two active halogenated acids hampered the proliferation of the planktonic and biofilm cells. Moreover, these compounds have the potential to effectively inhibit the presence of biofilm formation on the surface of both squid and shrimp models.
Assuntos
Ácidos Borônicos , Vibrio parahaemolyticus , Vibrio , Biofilmes , Fatores de Virulência/farmacologia , Antibacterianos/farmacologiaRESUMO
Food-related illnesses have become a growing public concern due to their considerable socioeconomic and medical impacts. Vibrio parahaemolyticus and Staphylococcus aureus have been implicated as causative organisms of food-related infections and poisoning, and both can form biofilms which confer antibiotic resistance. Hence, the need for continuous search for compounds with antibiofilm and antivirulence properties. In this study, 22 iodinated hydrocarbons were screened for their antibiofilm activity, and of these, iodopropynyl butylcarbamate (IPBC) was found to effectively control biofilm formation of both pathogens with a MIC of 50 µg/mL which was bactericidal to V. parahaemolyticus and S. aureus. Microscopic studies confirmed IPBC inhibits biofilm formation of both bacteria and also disrupted their mixed biofilm formation. Furthermore, IPBC suppressed virulence activities such as motility and hemolytic activity of V. parahaemolyticus and the cell surface hydrophobicity of S. aureus. It exhibited a preservative potential against both pathogens in a shrimp model. IPBC disrupted the cell membrane of S. aureus and V. parahaemolyticus and differentially affected gene expressions related to biofilm formation and virulence. Additionally, it displayed broad-spectrum antibiofilm activities against other clinically relevant pathogens. These findings indicate IPBC offers a potential means of controlling infections mediated by Vibrio and Staphylococcus biofilms.
Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Vibrio parahaemolyticus , Biofilmes/efeitos dos fármacos , Vibrio parahaemolyticus/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Virulência/efeitos dos fármacosRESUMO
Importance: Transportation barriers have long been associated with poorer health outcomes; this burden is especially acute for individuals with opioid use disorder (OUD), a chronic disease often associated with low socioeconomic status. Conventional travel time analyses may not fully account for experiential components of travel, thereby understating the true travel burden and overstating treatment accessibility to opioid treatment programs (OTPs). Objective: To develop a metric of feels-like accessibility for those using public transit to access OTPs that accounts for the realistic travel burden on individuals with OUD. Design, Setting, and Participants: This cross-sectional study integrated high-resolution transit schedules and operating hours of OTPs to measure feels-like accessibility. Feels-like accessibility considers the differential outcomes of out-of-vehicle travel components and more realistically reflects individuals' transportation burden than conventional accessibility measures. Gini indices and spatial regression models were used to investigate inequities in accessibility. Geocoded data for residential addresses of 1018 overdose fatalities in Connecticut in 2019 were used as a proxy for the treatment needs of individuals with OUD. Data were analyzed between May and August 2023. Main Outcomes and Measures: Conventional and feels-like accessibility scores. Exposures: Fluctuations in public transit frequencies over the course of the day and the limited operating hours of the OTPs. Results: Of the 1018 individuals in the study, the mean (SD) age at death was 43.7 (12.6) years, 784 individuals (77%) were men, 111 (11%) were African American, and 889 (87%) were White, with other racial and ethnic categories including 18 individuals (2%). A total of 264 individuals in the sample (26%) could not access an OTP within 180 minutes. For those who could access these facilities, the average 1-way travel time was 45.6 minutes, with individuals spending approximately 70% of their trip duration on out-of-vehicle travel components. The conventional accessibility metric underestimates individuals' travel burden to OTPs as well as the inequity in accessibility compared with the feels-like accessibility metric. For example, the median (range) conventional accessibility score, defined as the number of OTPs within 120 minutes of transit travel time, was 5.0 (0.0-17.0); the median (range) feels-like accessibility score, defined as the number of OTPs within 120 minutes of transit travel time weighted to account for in- and out-of-vehicle segments, was 1.0 (0.0-10.0). There is a considerable temporal variation in travel time and accessibility depending on the departure times. Conclusions and Relevance: In this cross-sectional study of travel burdens, the calculated feels-like accessibility scores, which consider the differential outcomes of out-of-vehicle travel components (eg, walking and waiting), could better and more realistically reflect passengers' transportation burden. Policy recommendations derived from the conventional accessibility metric could be misleading, and decision-makers should use feels-like accessibility metrics that adequately capture individuals' travel burdens. In the context of access to OTPs, the findings from this study suggest that opening new OTP sites to address gaps in access due to distance to services or extending hours of operation at existing sites may ameliorate the travel burden for individuals.
Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Masculino , Humanos , Feminino , Analgésicos Opioides/uso terapêutico , Estudos Transversais , Viagem , Meios de Transporte , Transtornos Relacionados ao Uso de Opioides/epidemiologiaRESUMO
Despite the development of various drug delivery technologies, there remains a significant need for vehicles that can improve targeting and biodistribution in "hard-to-penetrate" tissues. Some solid tumors, for example, are particularly challenging to penetrate due to their dense extracellular matrix (ECM). In this study, we have formulated a new family of rod-shaped delivery vehicles named Janus base nanopieces (Rod JBNps), which are more slender than conventional spherical nanoparticles, such as lipid nanoparticles (LNPs). These JBNp nanorods are formed by bundles of DNA-inspired Janus base nanotubes (JBNts) with intercalated delivery cargoes. To develop this novel family of delivery vehicles, we employed a computation-aided design (CAD) methodology that includes molecular dynamics and response surface methodology. This approach precisely and efficiently guides experimental designs. Using an ovarian cancer model, we demonstrated that JBNps markedly improve penetration into the dense ECM of solid tumors, leading to better treatment outcomes compared to FDA-approved spherical LNP delivery. This study not only successfully developed a rod-shaped delivery vehicle for improved tissue penetration but also established a CAD methodology to effectively guide material design.
RESUMO
Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.
Assuntos
Acne Vulgar , Anti-Infecciosos , Naftoquinonas , Infecções Estafilocócicas , Animais , Camundongos , Candida albicans/genética , Staphylococcus aureus , Biofilmes , Anti-Infecciosos/farmacologiaRESUMO
BACKGROUND: Most bacteria and fungi form biofilms that attach to living or abiotic surfaces. These biofilms diminish the efficacy of antimicrobial agents and contribute to chronic infections. Furthermore, multispecies biofilms composed of bacteria and fungi are often found at chronic infection sites. PURPOSE: In this study, lawsone (2hydroxy-1,4-naphthoquinone) and its parent 1,4-naphthoquinone were studied for antimicrobial and antibiofilm activities against single-species and multispecies biofilms of enterohemorrhagic Escherichia coli O157:H7 (EHEC) and Candida albicans. METHODS: Biofilm formation assays, biofilm eradication assays, antimicrobial assays, live cell imaging microscopy, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), extracellular polymeric substances and indole production, cell surface hydrophilicity assay, cell motility, cell aggregation, hyphal growth, dual species biofilm formation, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and toxicity assays on plant seed germination and nematode model were utilized to investigate how lawsone affect biofilm development. RESULTS: Sub-inhibitory concentrations of lawsone (35 µg/ml) significantly inhibited single-and multispecies biofilm development. Lawsone reduced the production of curli and indole, and the swarming motility of EHEC, efficiently inhibited C. albicans cell aggregation and hyphal formation, and increased the cell surface hydrophilicity of C. albicans. Transcriptomic analysis showed that lawsone suppressed the expression of the curli-related genes csgA and csgB in EHEC, and the expression of several hypha- and biofilm-related genes (ALS3, ECE1, HWP1, and UME6) in C. albicans. In addition, lawsone up to 100 µg/ml was nontoxic to the nematode Caenorhabditis elegans and to the seed growth of Brassica rapa and Triticum aestivum. CONCLUSION: These results show that lawsone inhibits dual biofilm development and suggest that it might be useful for controlling bacterial or fungal infections and multispecies biofilms.
Assuntos
Anti-Infecciosos , Escherichia coli O157 , Naftoquinonas , Candida albicans , Biofilmes , Indóis/farmacologiaRESUMO
Microbial biofilms are protected surface-attached communities of bacteria or fungi with high drug tolerance that typically cause persistent infections. Smart drug carriers are being explored as a promising platform of antimicrobials to address their recalcitrance to antibiotic agents and minimize the side effects of current therapies. In this study, soy lecithin liposomes loaded with lauric acid (LA) and myristoleic acid (MA) were formulated using an emulsification method, and their antibiofilm properties were evaluated. The physio-chemical properties of the most potent liposome were characterized using a zeta sizer, transmission electron microscopy (TEM), fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. TEM and zeta sizer analysis of the liposome revealed a homogeneous spherical structure with an average size of 159.2 nm and zeta potential of - 5.4 mV. The unilamellar liposomes loaded with LA at 0.1-0.5 µg/mL achieved obvious antibiofilm efficiency against Staphylococcus aureus and Candida albicans and their dual biofilms. Also, LA-loaded liposome formulation efficiently disrupted preformed biofilms of S. aureus and C. albicans. Furthermore, formulated liposomal LA (0.1 µg/mL) exhibited 100-fold increased dual biofilm inhibition compared to LA alone. The single biofilms and dual biofilm formation on polystyrene were reduced as determined by 3D-bright field and scanning electron microscopy. Zeta potential measurements exhibited neutralized surface charge of S. aureus, and the liposomes inhibited hyphae formation in C. albicans. These findings demonstrated that the LA-incorporated liposomes have great potential to become a new, effective, and good antibiofilm agent for treating S. aureus and C. albicans infections.
Assuntos
Anti-Infecciosos , Lipossomos , Lipossomos/farmacologia , Staphylococcus aureus , Ácidos Graxos/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Candida albicans , Biofilmes , Testes de Sensibilidade MicrobianaRESUMO
Despite the increasing economic burden of people with disabilities (PWDs) over time, the impact of physical activity on PWDs in the Republic of Korea (ROK) remains relatively unexplored. Thus, we examined the association between physical activity and disease risk, health care utilization, and expenditures for PWDs in the ROK. We considered gender differences across eight diseases using the National Health Insurance (NHI) panel data from 2013 to 2019. The sample consisted of PWDs who underwent regular medical check-ups and were aged 40 years and above, aligning with the NHI's health screening program targeting beneficiaries in this age range. The final sample included 281 142 healthy PWDs. Among them, 44.1% (n = 124 061) engaged in physical activity, while the remaining 45.9% (n = 157 081) did not participate in any physical activity. The results show a negative association between physical activity and the incidence of various diseases among both genders. Health care utilization exhibited gender and disease-based variations, with men and women demonstrating higher utilization rates in the absence of physical activity. Health care expenditures also differed based on gender and disease, as men and women displayed higher costs in the absence of physical activity. Consequently, public policymakers should establish tailored activity programs for PWDs, adhering to activity guidelines designed for this population.
Assuntos
Atenção à Saúde , Pessoas com Deficiência , Humanos , Masculino , Feminino , Gastos em Saúde , Exercício Físico , Gestão de RiscosRESUMO
Vibrio parahaemolyticus is a high-risk foodborne pathogen associated with raw or undercooked seafoods and its biofilm forming potential has become a threat to food safety and economic values. Hence, this study aims to examine the antibacterial and antibiofilm activities as well as virulence inhibitory effects of selected flavonoids against V. parahaemolyticus. Out of the sixteen flavonoid derivatives, 6-aminoflavone (6-AF), 3,2-dihydroxyflavone (3,2-DHF) and 2,2-dihydroxy-4-methoxybenzophenone (DHMB) were found as active biofilm inhibitors. 3,2-DHF and DHMB had minimum inhibitory concentrations of 20 and 50 µg/mL respectively against Vibrio planktonic cells and displayed superior antibacterial activities to standard controls. Also, they disrupted preformed biofilms and suppressed virulence properties including motilities, cell hydrophobicity and aggregation. They impaired iron acquisition mechanism and hemolysin production at sub-MICs as supported by transcriptomic studies. Interestingly, the flavonoids interfered with the metabolic activity, cell division and membrane permeability to exert antibiofilm and antibacterial activities. 6-AF and 3,2-DHF were non-toxic in the C. elegans model and showed excellent capacity to protect shrimps from biodeterioration. Furthermore, the flavonoids inhibited biofilm formation by V. harveyi, Staphylococcus aureus and Salmonella typhimurium and the mixed-species biofilm with Vibrio. This study discovered flavonoid derivatives, especially 3,2-DHF as potential bioactive compounds capable of offering protection from risks associated with biofilm formation by V. parahaemolyticus and other food pathogens.
RESUMO
IMPORTANCE: The persistence of Candida infections is due to its ability to form biofilms that enable it to resist antifungals and host immune systems. Hence, inhibitions of the biofilm formation and virulence characteristics of Candida sp. provide potential means of addressing these infections. Among various chromone derivatives tested, four chromone-3-carbonitriles showed antifungal, antibiofilm, and antivirulence activities against several Candida species. Their mode of action has been partially revealed, and their toxicity is reported here using nematode and plant models.
Assuntos
Antifúngicos , Candidíase , Antifúngicos/farmacologia , Candida , Candida albicans , Candidíase/tratamento farmacológico , Biofilmes , Testes de Sensibilidade MicrobianaRESUMO
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Halogênios/química , Halogenação , Relação Estrutura-AtividadeRESUMO
Multidrug-resistant bacteria such as Staphylococcus aureus constitute a global health problem. Gram-positive S. aureus secretes various toxins associated with its pathogenesis, and its biofilm formation plays an important role in antibiotic tolerance and virulence. Hence, we investigated if the metabolites of vitamin A1 might diminish S. aureus biofilm formation and toxin production. Of the three retinoic acids examined, 13-cis-retinoic acid at 10 µg/mL significantly decreased S. aureus biofilm formation without affecting its planktonic cell growth (MIC >400 µg/mL) and also inhibited biofilm formation by Staphylococcus epidermidis (MIC >400 µg/mL), but less affected biofilm formation by a uropathogenic Escherichia coli strain, a Vibrio strain, or a fungal Candida strain. Notably, 13-cis-retinoic acid and all-trans-retinoic acid significantly inhibited the hemolytic activity and staphyloxanthin production by S. aureus. Furthermore, transcriptional analysis disclosed that 13-cis-retinoic acid repressed the expressions of virulence- and biofilm-related genes, such as the two-component arlRS system, α-hemolysin hla, nuclease (nuc1 and nuc2), and psmα (phenol soluble modulins α) in S. aureus. In addition, plant and nematode toxicity assays showed that 13-cis-retinoic acid was only mildly toxic at concentrations many folds higher than its effective antibiofilm concentrations. These findings suggest that metabolites of vitamin A1, particularly 13-cis-retinoic acid, might be useful for suppressing biofilm formation and the virulence characteristics of S. aureus.