RESUMO
This paper proposes a performance-based mix design (PBMD) framework to support performance-related specifications (PRS) needed to establish relationships between acceptable quality characteristics (AQCs) and predicted performance, as well as to develop fatigue-preferred, rutting-preferred, and performance-balanced mix designs. The framework includes defining performance tests and threshold values, developing asphalt mix designs, identifying available performance levels, conducting sensitivity analysis, establishing the relationships between AQCs and predicted performance, and determining performance targets and AQC values for the three PBMDs using predicted performance criteria. Additionally, the framework recommends selecting the PBMD category for each asphalt layer to minimize pavement distresses. In this study, the proposed PBMD protocol was applied to FHWA accelerated loading facility (ALF) materials using asphalt mixture performance tester (AMPT) equipment coupled with mechanistic models. The study developed nine mix designs with varying design VMAs and air voids using the Bailey method. The cracking and rutting performance of the mix designs were determined by direct tension cyclic (DTC) fatigue testing, triaxial stress sweep (TSS) testing, and viscoelastic continuum damage (S-VECD) and viscoplastic shift models for temperature and stress effects. The study found that adjusting the design VMA was the primary way to achieve required performance targets. For fatigue-preferred mix design, the recommended targets were a cracking area of 0 to 1.9%, a rut depth of 10 mm, and a design VMA of 14.6 to 17.6%. For rutting-preferred mix design, the recommended targets were a cracking area of 18%, a rut depth of 0 to 3.8 mm, and a design VMA of 10.1 to 13.1%. For performance-balanced mix design, the recommended targets were a cracking area of 8.1 to 10.7%, a rut depth of 4.6 to 6.4 mm, and a design VMA of 12.6 to 14.3%. Finally, pavement simulation results verified that the proposed PBMD pavement design with fatigue-preferred mix in the bottom layer, performance-balanced mix in the intermediate layer, and rutting-preferred mix in the surface mix could minimize bottom-up cracking propagation without exceeding the proposed rutting performance criterion for long-life.
RESUMO
Ardisia silvestris is a traditional medicinal herb used in Vietnam and several other countries. However, the skin-protective properties of A. silvestris ethanol extract (As-EE) have not been evaluated. Human keratinocytes form the outermost barrier of the skin and are the main target of ultraviolet (UV) radiation. UV exposure causes skin photoaging via the production of reactive oxygen species. Protection from photoaging is thus a key component of dermatological and cosmetic products. In this research, we found that As-EE can prevent UV-induced skin aging and cell death as well as enhance the barrier effect of the skin. First, the radical-scavenging ability of As-EE was checked using DPPH, ABTS, TPC, CUPRAC, and FRAP assays, and a 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay was used to examine cytotoxicity. Reporter gene assays were used to determine the doses that affect skin-barrier-related genes. A luciferase assay was used to identify possible transcription factors. The anti-photoaging mechanism of As-EE was investigated by determining correlated signaling pathways using immunoblotting analyses. As-EE had no harmful effects on HaCaT cells, according to our findings, and As-EE revealed moderate radical-scavenging ability. With high-performance liquid chromatography (HPLC) analysis, rutin was found to be one of the major components. In addition, As-EE enhanced the expression levels of hyaluronic acid synthase-1 and occludin in HaCaT cells. Moreover, As-EE dose-dependently up-regulated the production of occludin and transglutaminase-1 after suppression caused by UVB blocking the activator protein-1 signaling pathway, in particular, the extracellular response kinase and c-Jun N-terminal kinase. Our findings suggest that As-EE may have anti-photoaging effects by regulating mitogen-activated protein kinase, which is good news for the cosmetics and dermatology sectors.
RESUMO
The purpose of this research was to promote the recycling of pellet asphalt with Crumb Rubber Modifier (CRM) and Graphite Nanoplatelet (GNP) in pothole restoration. In this study, several laboratory tests were carried out on mixes containing CRM content ratios of 5%, 10%, and 20% and GNP content of 3% and 6% in order to identify the ideal mixing ratio of pellet-type asphalt paving materials. The Marshall stability test, the Hamburg wheel tracking test, and the dynamic modulus test were all performed to compare the effectiveness of the proposed method and heated asphalt combinations. Afterward, the full-scale testbed was conducted to verify the practical application between the proposed method and popular pothole-repairing materials. Both laboratory and field test findings confirmed that the asphalt pavement using 5% CRM and 6% GNP improved the resistance to plastic deformation and anti-stripping compared to the generally heated asphalt paving material, thereby extending road life. However, the resistance to fatigue cracking can be slightly reduced by incorporating these additives. Overall, the CRM and GNP asphalt pellet approach is a feasible solution for sustainable pavement maintenance and rehabilitation, particularly in small-scale damage areas such as potholes.
RESUMO
Foam cement is an engineered lightweight material relevant to a broad range of engineering applications. This study explores the effects of aluminum chips on cement-bentonite slurry expansion, pressure development, and the evolution of pore topology. The terminal volume expansion under free-boundary conditions or the pressure build up under volume-controlled conditions are a function of the aluminum mass ratio, bentonite mass ratio, and aluminum chip size. X-ray CT images show that finer aluminum chips create smaller pores but result in a larger volume expansion than when larger sized chips are used; on the other hand, large chip sizes result in unreacted residual aluminum. Time-lapse CT images clearly show the sequence of processes which lead to the development of foam cement: gas bubble nucleation, bubble growth, capillary-driven grain displacement enhanced by the presence of bentonite, coalescence, percolation, gas leakage and pore collapse. These results illustrate the potential to customize the mixture composition of chemically-induced gassy cement to control expansion and pressure build up, and to minimize percolating discontinuities and gas release.
RESUMO
The Licania genus has been used in the treatment of dysentery, diabetes, inflammation, and diarrhea in South America. Of these plants, the strong anti-inflammatory activity of Licania macrocarpa Cuatrec (Chrysobalanaceae) has been reported previously. However, the beneficial activities of this plant on skin health have remained unclear. This study explores the protective activity of a methanol extract (50-100 µg/mL) in the aerial parts of L. macrocarpa Cuatrec (Lm-ME) and its mechanism, in terms of its moisturizing/hydration factors, skin wrinkles, UV radiation-induced cell damage, and radical generation (using RT/real-time PCR, carbazole assays, flowcytometry, DPPH/ABTS, and immunoblotting analysis). The anti-pigmentation role of Lm-ME was also tested by measuring levels of melanin, melanogenesis-related genes, and pigmentation-regulatory proteins. Lm-ME decreased UVB-irradiated death in HaCaT cells by suppressing apoptosis and inhibited matrix metalloproteinases 1/2 (MMP1/2) expression by enhancing the activity of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. It was confirmed that Lm-ME displayed strong antioxidative activity. Lm-ME upregulated the expression of hyaluronan synthases-2/3 (HAS-2/3) and transglutaminase-1 (TGM-1), as well as secreted levels of hyaluronic acid (HA) via p38 and JNK activation. This extract also significantly inhibited the production of hyaluronidase (Hyal)-1, -2, and -4. Lm-ME reduced the melanin expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1/2 (TYRP-1/2) in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 cells via the reduction of cAMP response element-binding protein (CREB) and p38 activation. These results suggest that Lm-ME plays a role in skin protection through antioxidative, moisturizing, cytoprotective, and skin-lightening properties, and may become a new and promising cosmetic product beneficial for the skin.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Hymenocallis littoralis (Jacq.) Salisb. Also known as Pancratium littorale Jacq. And Hymenocallis panamensis Lindl., is a medicinal plant from the family Amarylideceae used for emetic and wound healing and has manifested anti-neoplastic, anti-oxidant, and anti-viral properties. AIM OF THE STUDY: The aim of this paper is to investigate the anti-inflammatory potential and molecular mechanism of H. littoralis against lipopolysaccharide (LPS)-induced macrophages and in vivo HCl/EtOH-induced gastritis mucosal injury models. MATERIALS AND METHODS: The production of pro-inflammatory cytokines and mediators was evaluated by Griess assay, RT-PCR, and real-time PCR. Moreover, the relevant proteins of mitogen-activated protein kinases (MAPKs) including ERK, JNK, p38, c-Jun, and c-Fos were detected using immunoblotting. RESULTS: We demonstrated that H. littoralis prominently dampened production of nitric oxide (NO) in LPS-, poly I:C-, or pam3CSK-stimulated RAW264.7 cells; down-regulated the expression levels of interleukin 6 (IL-6) and inducible nitric oxide synthase; and markedly attenuated the luciferase activities of AP-1 reporter promoters. Moreover, H. littoralis administration prominently downregulated c-Fos and c-Jun phosphorylation as well as JNK1, ERK2, and MKK7 overexpression in HEK 293T cells. Furthermore, H. littoralis displayed anti-inflammatory effects in the HCl/EtOH-induced gastritis mice model. CONCLUSIONS: Cumulatively, these results demonstrated that H. littoralis exerts eminently anti-inflammatory activities in LPS-stimulated RAW264.7 cells in vitro and in HCl/EtOH-induced gastritis mice models in vivo. These activities could be attributed to its modulatory effects on the MAPK signaling pathway.
Assuntos
Amaryllidaceae , Gastrite , Liliaceae , Animais , Anti-Inflamatórios/efeitos adversos , Etanol/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Gastrite/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/metabolismo , Extratos Vegetais/efeitos adversosRESUMO
Malus baccata (L.) Borkh. is a widely used medical plant in Asia. Since the anti-inflammatory mechanism of this plant is not fully understood, the aim of this study was to explore the anti-inflammatory function and mechanism of Malus baccata (L.) Borkh. methanol extract (Mb-ME). For in vitro experiments, nitric oxide production assay, PCR, overexpression strategy, immunoblotting, luciferase reporter assay, and immunoprecipitation were employed to explore the molecular mechanism and the target proteins of Mb-ME. For in vivo experiments, an HCl/EtOH-induced gastritis mouse model was used to confirm the anti-inflammatory function. Mb-ME showed a strong ability to inhibit the production of nitric oxide and the expression of inflammatory genes. Mb-ME decreased NF-κB luciferase activity mediated by MyD88 and TRIF. Moreover, Mb-ME blocked the activation of Src, Syk, p85, Akt, p50, p60, IKKα/ß, and IκBα in LPS-induced RAW264.7 cells. Overexpression and immunoprecipitation analyses suggested Syk and Src as the target enzymes of Mb-ME. In vitro results showed that Mb-ME could alleviate gastritis and relieve the protein expression of p-Src, p-Syk, and COX-2, as well as the gene expression of COX-2 and TNF-α. In summary, this study implied that Mb-ME performs an anti-inflammatory role by suppressing Syk and Src in the NF-κB signaling pathway, both in vivo and in vitro.
RESUMO
CONTEXT: Among the plants in the genus Barringtonia (Lecythidaceae) used as traditional medicines to treat arthralgia, chest pain, and haemorrhoids in Indonesia, Barringtonia racemosa L. and Barringtonia acutangula (L.) Gaertn. have demonstrated anti-inflammatory activity in systemic inflammatory models. OBJECTIVE: The anti-inflammatory activity of Barringtonia angusta Kurz has not been investigated. We prepared a methanol extract of the leaves and stems of B. angusta (Ba-ME) and systemically evaluated its anti-inflammatory effects in vitro and in vivo. MATERIALS AND METHODS: RAW264.7 cells stimulated with LPS or Pam3CSK4 for 24 h were treated with Ba-ME (12.5, 25, 50, 100, and 150 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated. Luciferase reporter gene assay, western blot analysis, overexpression experiments, and cellular thermal shift assay were conducted to explore the mechanism of Ba-ME. In addition, the anti-gastritis activity of Ba-ME (50 and 100 mg/kg, administered twice per day for two days) was evaluated using an HCl/EtOH-induced gastritis mouse model. RESULTS: Ba-ME dose-dependently suppressed NO production [IC50 = 123.33 µg/mL (LPS) and 46.89 µg/mL (Pam3CSK4)] without affecting cell viability. Transcriptional expression of iNOS, IL-1ß, COX-2, IL-6, and TNF-α and phosphorylation of Src, IκBα, p50/105, and p65 were inhibited by Ba-ME. The extract specifically targeted the Src protein by binding to its SH2 domain. Moreover, Ba-ME significantly ameliorated inflammatory lesions in the HCl/EtOH-induced gastritis model. DISCUSSION AND CONCLUSIONS: The anti-inflammatory activity of Ba-ME is mediated by targeting of the Src/NF-κB signalling pathway, and B. angusta has potential as an anti-inflammatory drug.
Assuntos
Anti-Inflamatórios/administração & dosagem , Barringtonia , Sistemas de Liberação de Medicamentos/métodos , Gastrite/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Quinases da Família src/antagonistas & inibidores , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Relação Dose-Resposta a Droga , Gastrite/induzido quimicamente , Gastrite/metabolismo , Células HEK293 , Humanos , Masculino , Metanol/administração & dosagem , Metanol/metabolismo , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Folhas de Planta , Caules de Planta , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismoRESUMO
Purpose: One purpose of this study was to collect wide-field swept-source optical coherence tomography (SS-OCT) data from healthy eyes and build a wide-filed normative database. Another purpose was to compare the glaucoma diagnostic ability of new parameters based on this normative database to the parameters that are currently in use, such as the peripapillary retinal nerve fiber layer (RNFL), macular ganglion cell-inner plexiform layer, and ganglion cell complex (GCC) thickness. Methods: This study had 220 healthy eyes and 292 eyes with early-stage glaucoma (EG) and moderate-stage glaucoma (MG) enrolled. Using the wide-field SS-OCT images (12 × 9 mm) of healthy eyes, a wide-field normative database was constructed by transforming and combining the individual images into a uniform template using the fovea and optic disc centers as fixed landmarks. Adjustment for the disc size was conducted. With this normative database, new parameters based on the ratio of the fovea-disc distance (FDD) consisting of the fovea-disc relationship were evaluated. The glaucoma diagnostic ability was assessed based on the area under the receiver operating characteristic curve (AUC). Results: Among the new peripapillary parameters, the RNFL of the circumference of the circle with diameter 0.8 FDD showed the highest AUC value for EG and MG, but the value was not significantly superior to that of the initial RNFL (AUC = 0.940 vs. 0.937, P = 0.631). Among the macular parameters, the GCC of the area of the circle of 1.5 FDD showed the highest AUC value for EG and MG, and the value was significantly superior to that of initial GCC (AUC = 0.929 vs. 0.919, P = 0.033). However, there was no significant difference between the initial and adjusted GCC thickness in patients included in the EG or MG groups separately. Conclusions: A wide-field normative database was built to consider the relationship between the fovea and the optic disc. Considering this aspect, we found that the GCC analysis using a broader area presented a significantly greater glaucoma diagnostic performance for EG and MG in the macula than the initial parameter for the GCC. Translational Relevance: Based on this wide-field normative database, the clinical use of a wide-field deviation map may help diagnose the patients with EG and MG in the future.
Assuntos
Glaucoma , Tomografia de Coerência Óptica , Estudos Transversais , Glaucoma/diagnóstico , Humanos , Fibras Nervosas , Células Ganglionares da RetinaRESUMO
Undisturbed frozen samples can be efficiently obtained using the artificial ground freezing method. Thereafter, the restoration of in situ conditions, such as stress and density after thawing, is critical for laboratory testing. This study aims to experimentally explore the effects of thawing and the in situ stress restoration process on the geomechanical properties of sandy soils. Specimens were prepared at a relative density of 60% and frozen at -20 °C under the vertical stress of 100 kPa. After freezing, the specimens placed in the triaxial cell underwent thawing and consolidation phases with various drainage and confining stress conditions, followed by the shear phase. The elastic wave signals and axial deformation were measured during the entire protocol; the shear strength was evaluated from the triaxial compression test. Monotonic and cyclic simple shear tests were conducted to determine the packing density effect on liquefaction resistance. The results show that axial deformation, stiffness, and strength are minimized for a specimen undergoing drained thawing, restoring the initial stress during the consolidation phase, and that denser specimens are less susceptible to liquefaction. Results highlight that the thawing and stress restoration process should be considered to prevent the overestimation of stiffness, strength, and liquefaction resistance of sandy soils.
RESUMO
The objective of this study is to detect a cavity and estimate its size using sound waves in a laboratory model chamber filled with dry sand. One side of the chamber is covered with an acrylic plate, and a cavity is placed between the plate and sand. Sound waves are generated by impacting the plate with an instrumented hammer, and are measured using a microphone. The measured sound waves are analyzed with four comprehensive analyses including the measured area under the rectified signal envelope (MARSE) energy, flexibility, peak magnitude of wavelet transform, and frequency corresponding to the peak magnitude. The test results show that the accuracy of cavity detection using the MARSE energy is higher for thicker plates, whereas that using flexibility is higher for thinner plates. The accuracies of cavity detection using the peak magnitude of wavelet transform, and frequency corresponding to the peak magnitude are consistently high regardless of the plate thickness. Moreover, the cavity size may be under- or overestimated depending on the plate thickness and the selected analysis method. The average of the cavity sizes estimated by these methods, however, is slightly larger than the actual cavity size regardless of the plate thickness. This study demonstrates that microphones may be effectively used for the identification of a cavity and the estimation of its size.
RESUMO
Freeze-thaw cycles caused by seasonal temperature fluctuations significantly affect the geotechnical engineering properties. This study investigated the crucial role of water distribution patterns in the characterization of elastic wave properties for the fine F-110 sand during a freeze-thaw cycle. Sand specimens with four different water distribution patterns were prepared, namely homogeneously-mixed, evaporation-driven, vertically-, and horizontally-layered specimens. The P- and S-wave signatures of the specimens were monitored using piezo crystal sensors. Results indicated the criticality of water distribution patterns in the determination of small-strain soil properties even though the specimens had identical global water saturation. The nuclear magnetic resonance-based water volume depth profiles indicated that the evaporation-driven specimens had more heterogeneous pore-invasive ice-bonding layers at a high water saturation region; by contrast, the drying process facilitated uniform meniscuses around the particle contacts near the air percolation threshold. Elastic wave measurements for laboratory-prepared specimens might over/underestimate the small-strain soil stiffness of sediments in nature, wherein the drying processes prevailed to control the water saturation. This study highlighted a clear transition from capillary-controlled to cementation-controlled elastic wave properties during temperature oscillations.
RESUMO
Dynamic resistance, which can be used to express strength in the unit of stress and improve the reliability of the dynamic cone penetration test (DCPT), has been estimated by numerous methods. This study aims to compare different dynamic resistance estimation methods by using an instrumented dynamic cone penetrometer (IDCP). DCPTs are conducted using a standard dynamic cone penetrometer (DCP) and IDCP in the laboratory and field. Dynamic responses are obtained from the strain gauges and an accelerometer installed at the cone tip of the IDCP. The test results show that dynamic resistance is more efficient in distinguishing profiles than the dynamic cone penetration index. Among the methods to estimate the dynamic resistance at the cone tip, the force-velocity integration method and force integration method are more related to the conventional dynamic resistance considering the potential energy of the hammer than the force squared integration method. Additionally, the dynamic resistance estimated for a longer time period is more reliable, particularly for small driving rod lengths. Regarding the limitation of the dynamic response from an accelerometer in a previous study, the force-based dynamic resistance estimated for a longer time period can be used as the most reliable approach for further soil strength characterization.
Assuntos
Solo , Reprodutibilidade dos TestesRESUMO
The major and minor components in granular soil materials determine their properties and behavior. This study explores the transitional behavior within threshold fines fraction of soil mixtures based on the data from the literature and experiments. From the literature survey, the void ratio, shear wave velocity, compression index, and friction angle capture the transitional turning point between the low and data-adjusted high threshold fines fractions. In particular, there is a dramatic change in hydraulic conductivity below the low threshold fines fraction that highlights the critical role of small amounts of fines in the fluid flow (e.g., clogging). From an experimental study, the engineering properties of natural soil samples identified using deformation and elastic wave sensors show transitional trends within the Revised Soil Classification System framework. The evolution of compressibility and shear wave velocity indicate that either coarse, fine, or both particles are likely to contribute to large and small strain stiffnesses when the effective stress is below 400 kPa. Thereafter, both engineering properties indicate that the soil sample retains a memory of in-situ overburden pressure when the effective stress is around 400 kPa. There is a critical role of fines that are slightly higher than low threshold fines fraction on engineering properties that promote the application of Revised Soil Classification System RSCS to natural soils.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1ß, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1ß and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.
Assuntos
Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Rutaceae/química , Quinase Syk/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Gastrite/patologia , Células HEK293 , Humanos , Ácido Clorídrico/toxicidade , Inflamação/genética , Interleucina-1beta/genética , Lipopolissacarídeos/toxicidade , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacosRESUMO
PURPOSE: Microvasculature dropout (MvD) is a novel finding seen in optical coherence tomography angiography (OCTA), which is characterized by a localized dehiscence of the choriocapillaris in the parapapillary atrophy area. Disc hemorrhage (DH) is an important factor often associated with the development and especially progression of glaucoma. Here, we present 2 cases of MvD progression with DH. METHODS AND RESULTS: Case 1: A 62-year-old female patient with normal tension glaucoma in both her eyes had recurrent DH at the inferior area of her right eye. A new DH was observed in the inferotemporal area of the right eye with MvD progression on OCTA in the same direction three months from the baseline.Case 2: A 57-year-old female patient with bilateral steroid-induced secondary glaucoma also had recurrent DH in her right eye. Four months from the baseline, DH occurred in the superotemporal and inferotemporal area of the right eye, and MvD was detected on OCTA in the superotemporal corresponding direction. After 19 months from the baseline, OCTA was repeated. The DH had resolved, but the superotemporal MvD persisted. CONCLUSIONS: The 2 cases presented here are the first to report on the relationship between MvD progression and DH. MvD as visualized in OCTA imaging looks to be of clinical importance, and hopefully future studies will reveal the actual connection between MvD, DH, and glaucoma progression.
Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Disco Óptico , Corioide , Feminino , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Pressão Intraocular , Pessoa de Meia-Idade , Fibras Nervosas , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Campos VisuaisRESUMO
This study investigates variations in the velocity and sensitivity of electromagnetic waves in transmission lines configured in defective model piles for the detection of necking defects containing soil. Experiments are performed with model piles containing defects filled with different materials, such as air, sands, and clay. Five different types of transmission lines are configured in model piles. The electromagnetic waves are generated and detected using a time domain reflectometer. The velocity of electromagnetic waves is highest when the defect is filled with air, and it decreases with an increase in the water content. The velocity is lowest when the defect is filled with clay. The sensitivity of transmission lines for detecting defects decreases with an increase in soil water contents. The transmission line with a single electrical wire and epoxy-coated rebar exhibits the highest sensitivity, followed by that with three and two parallel electrical wires. Transmission lines with a single electrical wire and uncoated rebar and those with two parallel electrical wires wrapped with a sheath exhibit poor sensitivity when the defect is filled with clay. This study demonstrates that electromagnetic waves can be effective tools for detecting necking defects with wet and conductive soils in bored piles.
RESUMO
A modified oedometer cell for measuring the applied stresses and elastic waves at the top and bottom of the specimen is developed to evaluate the effect of the side friction on the stress dependence of the elastic wave velocities. In the modified cell, two load cells are installed at the top and bottom plates, respectively. To generate and detect the compressional and shear waves, a pair of piezo disk elements and a pair of bender elements are mounted at both the top and bottom plates. Experimental results show that the stresses measured at the bottom are smaller than those measured at the top during the loading and vice versa during unloading, regardless of the densities and heights of the specimens. Under nearly saturated conditions, the compressional wave velocities remain almost constant for the entire stress state. With plotting stresses measured at top, the shear wave velocities during unloading are greater than those during loading, whereas with plotting stresses measured at bottom, the shear wave velocities during unloading are smaller than those during loading owing to the side friction. The vertical effective stress may be simply determined from the average values of the stresses measured at the top and bottom of the specimens.
RESUMO
Subsurface characterization is essential for a successful infrastructure design and construction. This paper demonstrates the use of an instrumented cone penetrometer (ICP) for a dense layer characterization at two sites. The ICP consists of a cone tip and rods equipped with an accelerometer and four strain gauges, which allow dynamic driving, in addition to quasi-static pushing of the cone. The force and velocity of the cone are measured using the ICP instrumentation and compared with the N value, dynamic cone penetration index, and static cone resistance. A strong correlation has been observed between the total cone resistance estimated from the ICP and the dynamic cone penetration index and static cone resistance. After the correction of the dynamic cone resistance effect, the static component of the total cone resistance can be used as an alternative to a static cone resistance. This novel approach of soil resistance estimation using the ICP may be useful for dense layer characterization.
RESUMO
Daily freezing-thawing-repetitive loading is a critical factor affecting soil stability. This study assesses the strength of sand-silt mixtures with various silt fractions (SFs) subjected to cyclic freezing-thawing-repetitive loading. Specimens with SF of 0-100% were prepared with a fixed relative density of 60%. The number of repetitive loadings (N) was 1, 100, and 1000 for each specimen with different SFs. After three cycles of freezing-thawing-repetitive loading, the specimens were frozen at -5 °C for the uniaxial compression test. Test results show that the change in relative density (∆Dr) increases with the increase in SF up to 30% and decreases as SF increases beyond 30% owing to the change in the void ratio. The volumetric unfrozen water content (θu) increases with the increase in both SF and N owing to the effect of the physicochemical characteristics of soils on small voids. Unconfined compressive strength of sand-dominant mixtures (SF ≤ 30%) is reinforced by ∆Dr. By contrast, for silt-dominant mixtures (SF > 30%), the unconfined compressive strength decreases with the increase in θu and N due to lubricant role and sands dispersion. Thus, the effects of SF and N should be considered for sand-silt mixtures that have a probability to undergo cyclic freezing-thawing-repetitive loading.