Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Biomater Res ; 28: 0080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301248

RESUMO

Despite marked advancements in cancer immunotherapy over the past few decades, there remains an urgent need to develop more effective treatments in humans. This review explores strategies to overcome hurdles in cancer immunotherapy, leveraging innovative technologies including multi-specific antibodies, chimeric antigen receptor (CAR) T cells, myeloid cells, cancer-associated fibroblasts, artificial intelligence (AI)-predicted neoantigens, autologous vaccines, and mRNA vaccines. These approaches aim to address the diverse facets and interactions of tumors' immune evasion mechanisms. Specifically, multi-specific antibodies and CAR T cells enhance interactions with tumor cells, bolstering immune responses to facilitate tumor infiltration and destruction. Modulation of myeloid cells and cancer-associated fibroblasts targets the tumor's immunosuppressive microenvironment, enhancing immunotherapy efficacy. AI-predicted neoantigens swiftly and accurately identify antigen targets, which can facilitate the development of personalized anticancer vaccines. Additionally, autologous and mRNA vaccines activate individuals' immune systems, fostering sustained immune responses against cancer neoantigens as therapeutic vaccines. Collectively, these strategies are expected to enhance efficacy of cancer immunotherapy, opening new horizons in anticancer treatment.

2.
Nutrients ; 16(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275157

RESUMO

As part of our ongoing research on new anti-diabetic compounds from ethnopharmacologically consumed plants, two previously undescribed lupane-type triterpenoids (1 and 2) with dicarboxylic groups, an undescribed nor-taraxastane-type triterpenoid (3), and 14 known compounds (4-17) were isolated from the leaves of Cleistocalyx operculatus. Extensive spectroscopic analysis (IR, HRESIMS, 1D, and 2D NMR) was used for structure elucidation, while the known compounds were compared to reference data reported in the scientific literature. All the isolates (1-17) were evaluated for their inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme. Compounds 6, 9, and 17 showed strong PTP1B inhibitory activities. The mechanism of PTP1B inhibition was studied through enzyme kinetic experiments. A non-competitive mechanism of inhibition was determined using Lineweaver-Burk plots for compounds 6, 9, and 17. Additionally, Dixon plots were employed to determine the inhibition constant. Further insights were gained through a structure-activity relationship study and molecular docking analysis of isolated compounds with the PTP1B crystal structure. Moreover, all isolates (1-17) were tested for their stimulatory effects on the uptake of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) in differentiated 3T3-L1 adipocyte cells. Compounds 6, 13, and 17 exhibited strong glucose absorption stimulation activity in a dose-dependent manner.


Assuntos
Células 3T3-L1 , Glucose , Simulação de Acoplamento Molecular , Folhas de Planta , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Folhas de Planta/química , Camundongos , Animais , Glucose/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Syzygium/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Relação Estrutura-Atividade , Simulação por Computador
4.
Nat Commun ; 15(1): 6984, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143123

RESUMO

Transcription factors specifically bind to their consensus sequence motifs and regulate transcription efficiency. Transcription factors are also able to non-specifically contact the phosphate backbone of DNA through electrostatic interaction. The homeodomain of Meis1 TALE human transcription factor (Meis1-HD) recognizes its target DNA sequences via two DNA contact regions, the L1-α1 region and the α3 helix (specific binding mode). This study demonstrates that the non-specific binding mode of Meis1-HD is the energetically favored process during DNA binding, achieved by the interaction of the L1-α1 region with the phosphate backbone. An NMR dynamics study suggests that non-specific binding might set up an intermediate structure which can then rapidly and easily find the consensus region on a long section of genomic DNA in a facilitated binding process. Structural analysis using NMR and molecular dynamics shows that key structural distortions in the Meis1-HD-DNA complex are induced by various single nucleotide mutations in the consensus sequence, resulting in decreased DNA binding affinity. Collectively, our results elucidate the detailed molecular mechanism of how Meis1-HD recognizes single nucleotide mutations within its consensus sequence: (i) through the conformational features of the α3 helix; and (ii) by the dynamic features (rigid or flexible) of the L1 loop and the α3 helix. These findings enhance our understanding of how single nucleotide mutations in transcription factor consensus sequences lead to dysfunctional transcription and, ultimately, human disease.


Assuntos
DNA , Simulação de Dinâmica Molecular , Proteína Meis1 , Ligação Proteica , Proteína Meis1/metabolismo , Proteína Meis1/genética , Humanos , DNA/metabolismo , DNA/química , DNA/genética , Sítios de Ligação , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/química , Mutação , Sequência Consenso , Sequência de Bases
5.
Heliyon ; 10(14): e34701, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149018

RESUMO

The definition of service has evolved from a focus on material value in manufacturing before the 2000s to a customer-centric value based on the significant growth of the service industry. Digital transformation has become essential for companies in the service industry due to the incorporation of digital technology through the Fourth Industrial Revolution and COVID-19. This study utilised Bidirectional Encoder Representations from Transformer (BERT) to analyse 3029 international patents related to the customer service industry and digital transformation registered between 2000 and 2022. Through topic modelling, this study identified 10 major topics in the customer service industry and analysed their yearly trends. Our findings show that as of 2022, the trend with the highest frequency is user-centric network service design, while cloud computing has experienced the steepest increase in the last five years. User-centric network services have been steadily developing since the inception of the Internet. Cloud computing is one of the key technologies being developed intensively in 2023 for the digital transformation of customer service. This study identifies time series trends of customer service industry patents and suggests the effectiveness of using BERTopic to predict future trends in technology.

6.
Yonsei Med J ; 65(8): 488-491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048325

RESUMO

Atrial fibrillation (AF) is associated with an increased risk of thromboembolic events; however, many patients with AF are noncompliant with medication regimens, which increases said risk substantially. Suboptimal health literacy presents significant hurdles to compliance with medical treatment. Here we present a case of an elderly Hispanic woman with AF and several comorbidities, including a history of dementia, who presented with consecutive recurrence of acute limb ischemia in the bilateral lower extremities just 3 days apart. Both events were successfully treated with endovascular thrombectomy. This case study not only showcases the efficacy of the latest endovascular technologies, but also draws attention to the importance of strict patient medication adherence in AF and the effects that health literacy can have on said adherence.


Assuntos
Procedimentos Endovasculares , Isquemia , Trombectomia , Humanos , Trombectomia/métodos , Feminino , Isquemia/cirurgia , Isquemia/terapia , Procedimentos Endovasculares/métodos , Extremidade Inferior/irrigação sanguínea , Fibrilação Atrial/cirurgia , Idoso , Recidiva
7.
ACS Appl Mater Interfaces ; 16(10): 13139-13149, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415664

RESUMO

Lifetime-reconfigurable soft robots have emerged as a new class of robots, emphasizing the unmet needs of futuristic sustainability and security. Trigger-transient materials that can both actuate and degrade on-demand are crucial for achieving life-reconfigurable soft robots. Here, we propose the use of transient and magnetically actuating materials that can decompose under ultraviolet light and heat, achieved by adding photo-acid generator (PAG) and magnetic particles (Sr-ferrite) to poly(propylene carbonate) (PPC). Chemical and thermal analyses reveal that the mechanism of PPC-PAG decomposition occurs through PPC backbone cleavage by the photo-induced acid. The self-assembled monolayer (SAM) encapsulation of Sr-ferrite preventing the interaction with the PAG allowed the transience of magnetic soft actuators. We demonstrate remotely controllable and degradable magnetic soft kirigami actuators using blocks with various magnetized directions. This study proposes novel approaches for fabricating lifetime-configurable magnetic soft actuators applicable to diverse environments and applications, such as enclosed/sealed spaces and security/military devices.

8.
Bioorg Med Chem ; 100: 117588, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295487

RESUMO

Microsatellite instability (MSI) is a hypermutable condition caused by DNA mismatch repair system defects, contributing to the development of various cancer types. Recent research has identified Werner syndrome ATP-dependent helicase (WRN) as a promising synthetic lethal target for MSI cancers. Herein, we report the first discovery of thiophen-2-ylmethylene bis-dimedone derivatives as novel WRN inhibitors for MSI cancer therapy. Initial computational analysis and biological evaluation identified a new scaffold for a WRN inhibitor. Subsequent SAR study led to the discovery of a highly potent WRN inhibitor. Furthermore, we demonstrated that the optimal compound induced DNA damage and apoptotic cell death in MSI cancer cells by inhibiting WRN. This study provides a new pharmacophore for WRN inhibitors, emphasizing their therapeutic potential for MSI cancers.


Assuntos
Instabilidade de Microssatélites , Neoplasias , Tiofenos , Humanos , Cicloexanonas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Helicase da Síndrome de Werner/antagonistas & inibidores , Helicase da Síndrome de Werner/metabolismo , Tiofenos/química , Tiofenos/farmacologia
9.
Biochem Pharmacol ; 216: 115792, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689271

RESUMO

Alzheimer's disease (AD) is a degenerative brain disorder characterised by various neurological symptoms, including memory impairment and mood disorders, associated with the abnormal accumulation of amyloid b(Aß) and tau proteins in the brain. There is still no definitive treatment available for AD, and the Aß antibody drugs, which are expected to be approved by the FDA, have many limitations. Therefore, there is an urgent need to develop low-molecular-weight therapeutic agents for the management of AD. In this study, we investigated whether pectolinarin, a flavonoid, regulates Aß aggregation and Aß-induced toxicity. Pectolinarin demonstrated concentration-dependent inhibition of Aß aggregation and had the ability to break down pre-formed Aß aggregates, thereby reducing their neurotoxicity. Furthermore, pectolinarin suppressed Aß aggregates-induced reduction in long-term potentiation (LTP) in the hippocampus. Oral administration of pectolinarin in experimental animals inhibited memory impairment and LTP deficits induced by Aß injection in the hippocampus. These results indicate that pectolinarin may reduce toxic Aß species and Aß-induced memory impairments and synaptic dysfunction.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Peptídeos beta-Amiloides/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/metabolismo , Potenciação de Longa Duração , Hipocampo/metabolismo , Fragmentos de Peptídeos/metabolismo , Modelos Animais de Doenças
10.
Sci Adv ; 9(34): eadh9962, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624899

RESUMO

Developing soft robots that can control their own life cycle and degrade on-demand while maintaining hyperelasticity is a notable research challenge. On-demand degradable soft robots, which conserve their original functionality during operation and rapidly degrade under specific external stimulation, present the opportunity to self-direct the disappearance of temporary robots. This study proposes soft robots and materials that exhibit excellent mechanical stretchability and can degrade under ultraviolet light by mixing a fluoride-generating diphenyliodonium hexafluorophosphate with a silicone resin. Spectroscopic analysis revealed the mechanism of Si─O─Si backbone cleavage using fluoride ion (F-) and thermal analysis indicated accelerated decomposition at elevated temperatures. In addition, we demonstrated a robotics application by fabricating electronics integrated gaiting robot and a fully closed-loop trigger disintegration robot for autonomous, application-oriented functionalities. This study provides a simple yet novel strategy for designing life cycle mimicking soft robotics that can be applied to reduce soft robotics waste, explore hazardous areas, and ensure hardware security with on-demand destructive material platforms.

13.
Adv Sci (Weinh) ; 10(24): e2302632, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340589

RESUMO

Regeneration of over 10 mm long peripheral nerve defects remains a challenge due to the failure of regeneration by prolonged axotomy and denervation occurring in long-term recovery. Recent studies reveal that conductive conduits and electrical stimulation accelerate the regeneration of long nerve defects. In this study, an electroceutical platform combining a fully biodegradable conductive nerve conduit and a wireless electrical stimulator is proposed to maximize the therapeutic effect on nerve regeneration. Fully biodegradable nerve conduit fabricated using molybdenum (Mo) microparticles and polycaprolactone (PCL) can eliminate the unwanted effects of non-degradable implants, which occupy nerve paths and need to be removed through surgery increasing the risk of complications. The electrical and mechanical properties of Mo/PCL conduits are optimized by controlling the amounts of Mo and tetraglycol lubricant. The dissolution behavior and electrical conductivity of biodegradable nerve conduits in the biomimetic solutions are also evaluated. In in vivo experiments, the integrated strategy of a conductive Mo/PCL conduit with controlled therapeutic electrical stimulation shows accelerated axon regeneration for long sciatic nerve defects in rats compared to the use of the Mo/PCL conduit without stimulation and has a significant therapeutic effect based on the results obtained from the functional recovery test.


Assuntos
Axônios , Regeneração Nervosa , Ratos , Animais , Regeneração Nervosa/fisiologia , Próteses e Implantes , Nervo Isquiático/fisiologia , Condutividade Elétrica
14.
Polymers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177151

RESUMO

Three-dimensional (3D) printing has various applications in many fields, such as soft electronics, robotic systems, biomedical implants, and the recycling of thermoplastic composite materials. Three-dimensional printing, which was only previously available for prototyping, is currently evolving into a technology that can be utilized by integrating various materials into customized structures in a single step. Owing to the aforementioned advantages, multi-functional 3D objects or multi-material-designed 3D patterns can be fabricated. In this study, we designed and fabricated 3D-printed expandable structural electronics in a substrateless auxetic pattern that can be adapted to multi-dimensional deformation. The printability and electrical conductivity of a stretchable conductor (Ag-RTV composite) were optimized by incorporating a lubricant. The Ag-RTV and RTV were printed in the form of conducting voxels and frame voxels through multi-nozzle printing and were arranged in a negative Poisson's ratio pattern with a missing rib structure, to realize an expandable passive component. In addition, the expandable structural electronics were embedded in a soft actuator via one-step printing, confirming the possibility of fabricating stable interconnections in expanding deformation via a missing rib pattern.

15.
J Cheminform ; 15(1): 55, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248531

RESUMO

Tokenization is an important preprocessing step in natural language processing that may have a significant influence on prediction quality. This research showed that the traditional SMILES tokenization has a certain limitation that results in tokens failing to reflect the true nature of molecules. To address this issue, we developed the atom-in-SMILES tokenization scheme that eliminates ambiguities in the generic nature of SMILES tokens. Our results in multiple chemical translation and molecular property prediction tasks demonstrate that proper tokenization has a significant impact on prediction quality. In terms of prediction accuracy and token degeneration, atom-in-SMILES is more effective method in generating higher-quality SMILES sequences from AI-based chemical models compared to other tokenization and representation schemes. We investigated the degrees of token degeneration of various schemes and analyzed their adverse effects on prediction quality. Additionally, token-level repetitions were quantified, and generated examples were incorporated for qualitative examination. We believe that the atom-in-SMILES tokenization has a great potential to be adopted by broad related scientific communities, as it provides chemically accurate, tailor-made tokens for molecular property prediction, chemical translation, and molecular generative models.

16.
Front Cardiovasc Med ; 10: 1115870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200980

RESUMO

81-year-old female presented with subacute right lower extremity edema due to iliac vein compression by a markedly enlarged external iliac lymph node later identified as newly relapsed metastatic endometrial carcinoma. The patient underwent a full evaluation of the iliac vein lesion and cancer and had an intravenous stent placed with complete resolution of symptoms post-procedure.

17.
J Comput Chem ; 44(15): 1437-1445, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988355

RESUMO

A major difference between amyloid precursor protein (APP) isoforms (APP695 and APP751) is the existence of a Kunitz type protease inhibitor (KPI) domain which has a significant impact on the homo- and hetero-dimerization of APP isoforms. However, the exact molecular mechanisms of dimer formation remain elusive. To characterize the role of the KPI domain in APP dimerization, we performed a single molecule pull down (SiMPull) assay where homo-dimerization between tethered APP molecules and soluble APP molecules was highly preferred regardless of the type of APP isoforms, while hetero-dimerization between tethered APP751 molecules and soluble APP695 molecules was limited. We further investigated the domain level APP-APP interactions using coarse-grained models with the Martini force field. Though the model initial ternary complexes (KPI-E1, KPI-KPI, KPI-E2, E1-E1, E2-E2, and E1-E2) generated using HADDOCK (HD) and AlphaFold2 (AF2), the binding free energy profiles and the binding affinities of the domain combinations were investigated via the umbrella sampling with Martini force field. Additionally, membrane-bound microenvironments at the domain level were modeled. As a result, it was revealed that the KPI domain has a stronger attractive interaction with itself than the E1 and E2 domains, as reported elsewhere. Thus, the KPI domain of APP751 may form additional attractive interactions with E1, E2 and the KPI domain itself, whereas it is absent in APP695. In conclusion, we found that the APP751 homo-dimer formation is predominant than the homodimerization in APP695, which is facilitated by the presence of the KPI domain.


Assuntos
Precursor de Proteína beta-Amiloide , Inibidores de Proteases , Precursor de Proteína beta-Amiloide/metabolismo , Dimerização , Isoformas de Proteínas/metabolismo , Domínios Proteicos
18.
Dalton Trans ; 52(12): 3567-3574, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36880529

RESUMO

Hexagonal boron nitride (h-BN) is an excellent support material for nanocatalysts due to its two-dimensional (2D) architectural morphology and physicochemical stability. In this study, a chemically stable, recoverable, eco-friendly, and magnetic h-BN/Pd/Fe2O3 catalyst was prepared by a one-step calcination process, in which Pd and Fe2O3 nanoparticles (NPs) were uniformly decorated on the surface of h-BN via a typical adsorption-reduction procedure. In detail, nanosized magnetic (Pd/Fe2O3) NPs were derived from a Prussian blue analogue prototype, a well-known porous metal-organic framework, and then further surface-engineered to produce magnetic BN nanoplate-supported Pd nanocatalysts. The structural and morphological features of h-BN/Pd/Fe2O3 were investigated by spectroscopic and microscopic characterization techniques. Moreover, the h-BN nanosheets endow it with stability and appropriate chemical anchoring sites which solve the problems of inefficient reaction rate and high consumption caused by the inevitable agglomeration of precious metal NPs. Under mild reaction conditions, the developed nanostructured h-BN/Pd/Fe2O3 as the catalyst shows high yield and efficient reusability in reducing nitroarenes into the corresponding anilines using sodium borohydride (NaBH4) as a reductant.

19.
J Cheminform ; 15(1): 26, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823647

RESUMO

The simplified molecular-input line-entry system (SMILES) is the most prevalent molecular representation used in AI-based chemical applications. However, there are innate limitations associated with the internal structure of SMILES representations. In this context, this study exploits the resolution and robustness of unique molecular representations, i.e., SMILES and SELFIES (SELF-referencIng Embedded strings), reconstructed from a set of structural fingerprints, which are proposed and used herein as vital representational tools for chemical and natural language processing (NLP) applications. This is achieved by restoring the connectivity information lost during fingerprint transformation with high accuracy. Notably, the results reveal that seemingly irreversible molecule-to-fingerprint conversion is feasible. More specifically, four structural fingerprints, extended connectivity, topological torsion, atom pairs, and atomic environments can be used as inputs and outputs of chemical NLP applications. Therefore, this comprehensive study addresses the major limitation of structural fingerprints that precludes their use in NLP models. Our findings will facilitate the development of text- or fingerprint-based chemoinformatic models for generative and translational tasks.

20.
Front Bioeng Biotechnol ; 11: 1335188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162187

RESUMO

Iontronic sensors have garnered significant attention as wearable sensors due to their exceptional mechanical performance and the ability to maintain electrical performance under various mechanical stimuli. Iontronic sensors can respond to stimuli like mechanical stimuli, humidity, and temperature, which has led to exploration of their potential as versatile sensors. Here, a comprehensive review of the recent researches and developments on several types of iontronic sensors (e.g., pressure, strain, humidity, temperature, and multi-modal sensors), in terms of their sensing principles, constituent materials, and their healthcare-related applications is provided. The strategies for improving the sensing performance and environmental stability of iontronic sensors through various innovative ionic materials and structural designs are reviewed. This review also provides the healthcare applications of iontronic sensors that have gained increased feasibility and broader applicability due to the improved sensing performance. Lastly, outlook section discusses the current challenges and the future direction in terms of the applicability of the iontronic sensors to the healthcare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA