Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5459, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937468

RESUMO

Atomic-scale molecular modeling and simulation are powerful tools for computational biology. However, constructing models with large, densely packed molecules, non-water solvents, or with combinations of multiple biomembranes, polymers, and nanomaterials remains challenging and requires significant time and expertise. Furthermore, existing tools do not support such assemblies under the periodic boundary conditions (PBC) necessary for molecular simulation. Here, we describe Multicomponent Assembler in CHARMM-GUI that automates complex molecular assembly and simulation input preparation under the PBC. In this work, we demonstrate its versatility by preparing 6 challenging systems with varying density of large components: (1) solvated proteins, (2) solvated proteins with a pre-equilibrated membrane, (3) solvated proteins with a sheet-like nanomaterial, (4) solvated proteins with a sheet-like polymer, (5) a mixed membrane-nanomaterial system, and (6) a sheet-like polymer with gaseous solvent. Multicomponent Assembler is expected to be a unique cyberinfrastructure to study complex interactions between small molecules, biomacromolecules, polymers, and nanomaterials.


Assuntos
Nanoestruturas , Polímeros , Nanoestruturas/química , Polímeros/química , Simulação de Dinâmica Molecular , Proteínas/química , Modelos Moleculares , Solventes/química , Biologia Computacional/métodos , Software
2.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693396

RESUMO

Atomic-scale molecular modeling and simulation are powerful tools for computational biology. However, constructing models with large, densely packed molecules, non-water solvents, or with combinations of multiple biomembranes, polymers, and nanomaterials remains challenging and requires significant time and expertise. Furthermore, existing tools do not support such assemblies under the periodic boundary conditions (PBC) necessary for molecular simulation. Here, we describe Multicomponent Assembler in CHARMM-GUI that automates complex molecular assembly and simulation input preparation under the PBC. We demonstrate its versatility by preparing 6 challenging systems with varying density of large components: (1) solvated proteins, (2) solvated proteins with a pre-equilibrated membrane, (3) solvated proteins with a sheet-like nanomaterial, (4) solvated proteins with a sheet-like polymer, (5) a mixed membrane-nanomaterial system, and (6) a sheet-like polymer with gaseous solvent. Multicomponent Assembler is expected to be a unique cyberinfrastructure to facilitate innovative studies of complex interactions between small (organic and inorganic) molecules, biomacromolecules, polymers, and nanomaterials.

3.
J Xray Sci Technol ; 31(5): 879-892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424487

RESUMO

BACKGROUND: It is often difficult to automatically segment lung tumors due to the large tumor size variation ranging from less than 1 cm to greater than 7 cm depending on the T-stage. OBJECTIVE: This study aims to accurately segment lung tumors of various sizes using a consistency learning-based multi-scale dual-attention network (CL-MSDA-Net). METHODS: To avoid under- and over-segmentation caused by different ratios of lung tumors and surrounding structures in the input patch according to the size of the lung tumor, a size-invariant patch is generated by normalizing the ratio to the average size of the lung tumors used for the training. Two input patches, a size-invariant patch and size-variant patch are trained on a consistency learning-based network consisting of dual branches that share weights to generate a similar output for each branch with consistency loss. The network of each branch has a multi-scale dual-attention module that learns image features of different scales and uses channel and spatial attention to enhance the scale-attention ability to segment lung tumors of different sizes. RESULTS: In experiments with hospital datasets, CL-MSDA-Net showed an F1-score of 80.49%, recall of 79.06%, and precision of 86.78%. This resulted in 3.91%, 3.38%, and 2.95% higher F1-scores than the results of U-Net, U-Net with a multi-scale module, and U-Net with a multi-scale dual-attention module, respectively. In experiments with the NSCLC-Radiomics datasets, CL-MSDA-Net showed an F1-score of 71.7%, recall of 68.24%, and precision of 79.33%. This resulted in 3.66%, 3.38%, and 3.13% higher F1-scores than the results of U-Net, U-Net with a multi-scale module, and U-Net with a multi-scale dual-attention module, respectively. CONCLUSIONS: CL-MSDA-Net improves the segmentation performance on average for tumors of all sizes with significant improvements especially for small sized tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
4.
J Mol Biol ; 435(14): 167995, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356910

RESUMO

Molecular modeling and simulation play important roles in biomedical research as they provide molecular-level insight into the underlying mechanisms of biological functions that are difficult to elucidate only with experiments. CHARMM-GUI (https://charmm-gui.org) is a web-based cyberinfrastructure that is widely used to generate various molecular simulation system and input files and thus facilitates and standardizes the usage of common and advanced simulation techniques. In particular, PDB Manipulator provides various chemical modification options as the starting point for most input generation modules in CHARMM-GUI. Here, we discuss recent additions to PDB Manipulator, such as non-standard amino acids/RNA substitutions, ubiquitylation and SUMOylation, Lys/Arg post-translational modifications, lipidation, peptide stapling, and improved parameterization options of small molecules. These additional features are expected to make complex PDB modifications easy for biomolecular modeling and simulation.


Assuntos
Simulação de Dinâmica Molecular , Software , Simulação por Computador , Modelos Moleculares
5.
J Phys Chem B ; 126(38): 7354-7364, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36117287

RESUMO

Implicit solvent models are widely used because they are advantageous to speed up simulations by drastically decreasing the number of solvent degrees of freedom, which allows one to achieve long simulation time scales for large system sizes. CHARMM-GUI, a web-based platform, has been developed to support the setup of complex multicomponent molecular systems and prepare input files. This study describes an Implicit Solvent Modeler (ISM) in CHARMM-GUI for various generalized Born (GB) implicit solvent simulations in different molecular dynamics programs such as AMBER, CHARMM, GENESIS, NAMD, OpenMM, and Tinker. The GB models available in ISM include GB-HCT, GB-OBC, GB-neck, GBMV, and GBSW with the CHARMM and Amber force fields for protein, DNA, RNA, glycan, and ligand systems. Using the system and input files generated by ISM, implicit solvent simulations of protein, DNA, and RNA systems produce similar results for different simulation packages with the same input information. Protein-ligand systems are also considered to further validate the systems and input files generated by ISM. Simple ligand root-mean-square deviation (RMSD) and molecular mechanics generalized Born surface area (MM/GBSA) calculations show that the performance of implicit simulations is better than docking and can be used for early stage ligand screening. These reasonable results indicate that ISM is a useful and reliable tool to provide various implicit solvent simulation applications.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , DNA , Ligantes , Polissacarídeos , RNA , Solventes
6.
Protein Sci ; 31(11): e4446, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36124940

RESUMO

Enhanced sampling methodologies modifying underlying Hamiltonians can be used for the systems with a rugged potential energy surface that makes it hard to observe convergence using conventional unbiased molecular dynamics (MD) simulations. We present CHARMM-GUI Enhanced Sampler, a web-based tool to prepare various enhanced sampling simulations inputs with user-selected collective variables (CVs). Enhanced Sampler provides inputs for the following nine methods: accelerated MD, Gaussian accelerated MD, conformational flooding, metadynamics, adaptive biasing force, steered MD, temperature replica exchange MD, replica exchange solute tempering 2, and replica exchange umbrella sampling for the method-implemented MD packages including AMBER, CHARMM, GENESIS, GROMACS, NAMD, and OpenMM. Users only need to select a group of atoms via intuitive web-implementation in order to define commonly used nine CVs of interest: center of mass based distance, angle, dihedral, root-mean-square-distance, radius of gyration, distance projected on axis, two types of angles projected on axis, and coordination numbers. The enhanced sampling methods are tested with several biological systems to illustrate their efficiency over conventional MD. Enhanced Sampler with carefully optimized system-dependent parameters will help users to get meaningful results from their enhanced sampling simulations.


Assuntos
Simulação de Dinâmica Molecular , Conformação Molecular , Temperatura
7.
J Chem Inf Model ; 62(4): 1036-1051, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35167752

RESUMO

We present a comparative all-atom molecular dynamics simulation study of 18 biomembrane systems with lipid compositions corresponding to eukaryotic, bacterial, and archaebacterial membranes together with three single-component lipid bilayers. A total of 105 lipid types used in this study include diverse sterols and glycerol-based lipids with acyl chains of various lengths, unsaturation degrees, and branched or cyclic moieties. Our comparative analysis provides deeper insight into the influences of sterols and lipid unsaturation on the structural and mechanical properties of these biomembranes, including water permeation into the membrane hydrocarbon core. For sterol-containing membranes, sterol fraction is correlated with the membrane thickness, the area compressibility modulus, and lipid order but anticorrelated with the area per lipid and sterol tilt angles. Similarly, for all 18 biomembranes, lipid order is correlated with the membrane thickness and area compressibility modulus. Sterols and lipid unsaturation produce opposite effects on membrane thickness, but only sterols influence water permeation into the membrane. All membrane systems are accessible for public use in CHARMM-GUI Archive. They can be used as templates to expedite future modeling of realistic cell membranes with transmembrane and peripheral membrane proteins to study their structure, dynamics, molecular interactions, and function in a nativelike membrane environment.


Assuntos
Eucariotos , Simulação de Dinâmica Molecular , Archaea/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/química
8.
J Comput Chem ; 43(5): 359-375, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874077

RESUMO

Explicit treatment of electronic polarizability in empirical force fields (FFs) represents an extension over a traditional additive or pairwise FF and provides a more realistic model of the variations in electronic structure in condensed phase, macromolecular simulations. To facilitate utilization of the polarizable FF based on the classical Drude oscillator model, Drude Prepper has been developed in CHARMM-GUI. Drude Prepper ingests additive CHARMM protein structures file (PSF) and pre-equilibrated coordinates in CHARMM, PDB, or NAMD format, from which the molecular components of the system are identified. These include all residues and patches connecting those residues along with water, ions, and other solute molecules. This information is then used to construct the Drude FF-based PSF using molecular generation capabilities in CHARMM, followed by minimization and equilibration. In addition, inputs are generated for molecular dynamics (MD) simulations using CHARMM, GROMACS, NAMD, and OpenMM. Validation of the Drude Prepper protocol and inputs is performed through conversion and MD simulations of various heterogeneous systems that include proteins, nucleic acids, lipids, polysaccharides, and atomic ions using the aforementioned simulation packages. Stable simulations are obtained in all studied systems, including 5 µs simulation of ubiquitin, verifying the integrity of the generated Drude PSFs. In addition, the ability of the Drude FF to model variations in electronic structure is shown through dipole moment analysis in selected systems. The capabilities and availability of Drude Prepper in CHARMM-GUI is anticipated to greatly facilitate the application of the Drude FF to a range of condensed phase, macromolecular systems.


Assuntos
Simulação de Dinâmica Molecular , Software
9.
J Chem Theory Comput ; 18(1): 479-493, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34871001

RESUMO

Molecular modeling and simulation are invaluable tools for nanoscience that predict mechanical, physicochemical, and thermodynamic properties of nanomaterials and provide molecular-level insight into underlying mechanisms. However, building nanomaterial-containing systems remains challenging due to the lack of reliable and integrated cyberinfrastructures. Here we present Nanomaterial Modeler in CHARMM-GUI, a web-based cyberinfrastructure that provides an automated process to generate various nanomaterial models, associated topologies, and configuration files to perform state-of-the-art molecular dynamics simulations using most simulation packages. The nanomaterial models are based on the interface force field, one of the most reliable force fields (FFs). The transferability of nanomaterial models among the simulation programs was assessed by single-point energy calculations, which yielded 0.01% relative absolute energy differences for various surface models and equilibrium nanoparticle shapes. Three widely used Lennard-Jones (LJ) cutoff methods are employed to evaluate the compatibility of nanomaterial models with respect to conventional biomolecular FFs: simple truncation at r = 12 Å (12 cutoff), force-based switching over 10 to 12 Å (10-12 fsw), and LJ particle mesh Ewald with no cutoff (LJPME). The FF parameters with these LJ cutoff methods are extensively validated by reproducing structural, interfacial, and mechanical properties. We find that the computed density and surface energies are in good agreement with reported experimental results, although the simulation results increase in the following order: 10-12 fsw <12 cutoff < LJPME. Nanomaterials in which LJ interactions are a major component show relatively higher deviations (up to 4% in density and 8% in surface energy differences) compared with the experiment. Nanomaterial Modeler's capability is also demonstrated by generating complex systems of nanomaterial-biomolecule and nanomaterial-polymer interfaces with a combination of existing CHARMM-GUI modules. We hope that Nanomaterial Modeler can be used to carry out innovative nanomaterial modeling and simulations to acquire insight into the structure, dynamics, and underlying mechanisms of complex nanomaterial-containing systems.

10.
J Chem Inf Model ; 61(10): 5192-5202, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34546048

RESUMO

A lipid nanoparticle (LNP) formulation is a state-of-the-art delivery system for genetic drugs such as DNA, messenger RNA, and small interfering RNA, which is successfully applied to COVID-19 vaccines and gains tremendous interest in therapeutic applications. Despite its importance, a molecular-level understanding of the LNP structures and dynamics is still lacking, which makes rational LNP design almost impossible. In this work, we present an extension of CHARMM-GUI Membrane Builder to model and simulate all-atom LNPs with various (ionizable) cationic lipids and PEGylated lipids (PEG-lipids). These new lipid types can be mixed with any existing lipid types with or without a biomolecule of interest, and the generated systems can be simulated using various molecular dynamics engines. As a first illustration, we considered model LNP membranes with DLin-KC2-DMA (KC2) or DLin-MC3-DMA (MC3) without PEG-lipids. The results from these model membranes are consistent with those from the two previous studies, albeit with mild accumulation of neutral MC3 in the bilayer center. To demonstrate Membrane Builder's capability of building a realistic LNP patch, we generated KC2- or MC3-containing LNP membranes with high concentrations of cholesterol and ionizable cationic lipids together with 2 mol % PEG-lipids. We observe that PEG-chains are flexible, which can be more preferentially extended laterally in the presence of cationic lipids due to the attractive interactions between their head groups and PEG oxygen. The presence of PEG-lipids also relaxes the lateral packing in LNP membranes, and the area compressibility modulus (KA) of LNP membranes with cationic lipids fit into typical KA of fluid-phase membranes. Interestingly, the interactions between PEG oxygen and the head group of ionizable cationic lipids induce a negative curvature. We hope that this LNP capability in Membrane Builder can be useful to better characterize various LNPs with or without genetic drugs for rational LNP design.


Assuntos
COVID-19 , Nanopartículas , Vacinas contra COVID-19 , Humanos , Lipídeos , Polietilenoglicóis , RNA Interferente Pequeno , SARS-CoV-2
11.
J Chem Inf Model ; 61(9): 4145-4151, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34521199

RESUMO

Alchemical free energy methods, such as free energy perturbation (FEP) and thermodynamic integration (TI), become increasingly popular and crucial for drug design and discovery. However, the system preparation of alchemical free energy simulation is an error-prone, time-consuming, and tedious process for a large number of ligands. To address this issue, we have recently presented CHARMM-GUI Free Energy Calculator that can provide input and postprocessing scripts for NAMD and GENESIS FEP molecular dynamics systems. In this work, we extended three submodules of Free Energy Calculator to work with the full suite of GPU-accelerated alchemical free energy methods and tools in AMBER, including input and postprocessing scripts. The BACE1 (ß-secretase 1) benchmark set was used to validate the AMBER-TI simulation systems and scripts generated by Free Energy Calculator. The overall results of relatively large and diverse systems are almost equivalent with different protocols (unified and split) and with different timesteps (1, 2, and 4 fs), with R2 > 0.9. More importantly, the average free energy differences between two protocols are small and reliable with four independent runs, with a mean unsigned error (MUE) below 0.4 kcal/mol. Running at least four independent runs for each pair with AMBER20 (and FF19SB/GAFF2.1/OPC force fields), we obtained a MUE of 0.99 kcal/mol and root-mean-square error of 1.31 kcal/mol for 58 alchemical transformations in comparison with experimental data. In addition, a set of ligands for T4-lysozyme was used to further validate our free energy calculation protocol whose results are close to experimental data (within 1 kcal/mol). In summary, Free Energy Calculator provides a user-friendly web-based tool to generate the AMBER-TI system and input files for high-throughput binding free energy calculations with access to the full set of GPU-accelerated alchemical free energy, enhanced sampling, and analysis methods in AMBER.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Entropia , Ligantes , Simulação de Dinâmica Molecular , Termodinâmica
13.
bioRxiv ; 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34189527

RESUMO

A lipid nanoparticle (LNP) formulation is a state-of-the-art delivery system for genetic drugs such as DNA, mRNA, and siRNA, which is successfully applied to COVID-19 vaccines and gains tremendous interest in therapeutic applications. Despite its importance, a molecular-level understanding of the LNP structures and dynamics is still lacking, which makes a rational LNP design almost impossible. In this work, we present an extension of CHARMM-GUI Membrane Builder to model and simulate all-atom LNPs with various (ionizable) cationic lipids and PEGylated lipids (PEG-lipids). These new lipid types can be mixed with any existing lipid types with or without a biomolecule of interest, and the generated systems can be simulated using various molecular dynamics engines. As a first illustration, we considered model LNP membranes with DLin-KC2-DMA (KC2) or DLin-MC3-DMA (MC3) without PEG-lipids. The results from these model membranes are consistent with those from the two previous studies albeit with mild accumulation of neutral MC3 in the bilayer center. To demonstrate Membrane Builder's capability of building a realistic LNP patch, we generated KC2- or MC3-containing LNP membranes with high concentrations of cholesterol and ionizable cationic lipids together with 2 mol% PEG-lipids. We observe that PEG-chains are flexible, which can be more preferentially extended laterally in the presence of cationic lipids due to the attractive interactions between their head groups and PEG oxygen. The presence of PEG-lipids also relaxes the lateral packing in LNP membranes, and the area compressibility modulus (KA) of LNP membranes with cationic lipids fit into typical KA of fluid-phase membranes. Interestingly, the interactions between PEG oxygen and head group of ionizable cationic lipids induce a negative curvature. We hope that this LNP capability in Membrane Builder can be useful to better characterize various LNPs with or without genetic drugs for a rational LNP design.

14.
J Chem Theory Comput ; 17(6): 3554-3570, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34009984

RESUMO

Nonstandard amino acids are both abundant in nature, where they play a key role in various cellular processes, and can be synthesized in laboratories, for example, for the manufacture of a range of pharmaceutical agents. In this work, we have extended the additive all-atom CHARMM36 and CHARMM General force field (CGenFF) to a large set of 333 nonstandard amino acids. These include both amino acids with nonstandard side chains, such as post-translationally modified and artificial amino acids, as well as amino acids with modified backbone groups, such as chromophores composed of several amino acids. Model compounds representative of the nonstandard amino acids were parametrized for protonation states that are likely at the physiological pH of 7 and, for some more common residues, in both d- and l-stereoisomers. Considering all protonation, tautomeric, and stereoisomeric forms, a total of 406 nonstandard amino acids were parametrized. Emphasis was placed on the quality of both intra- and intermolecular parameters. Partial charges were derived using quantum mechanical (QM) data on model compound dipole moments, electrostatic potentials, and interactions with water. Optimization of all intramolecular parameters, including torsion angle parameters, was performed against information from QM adiabatic potential energy surface (PES) scans. Special emphasis was put on the quality of terms corresponding to PES around rotatable dihedral angles. Validation of the force field was based on molecular dynamics simulations of 20 protein complexes containing different nonstandard amino acids. Overall, the presented parameters will allow for computational studies of a wide range of proteins containing nonstandard amino acids, including natural and artificial residues.


Assuntos
Aminoácidos/química , Cisteína/análogos & derivados , Cisteína/química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Proteínas/química , Teoria Quântica , Eletricidade Estática , Estereoisomerismo , Triptofano/análogos & derivados , Triptofano/química , Água/química
15.
J Chem Theory Comput ; 17(4): 2431-2443, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797913

RESUMO

Molecular modeling and simulations are invaluable tools for polymer science and engineering, which predict physicochemical properties of polymers and provide molecular-level insight into the underlying mechanisms. However, building realistic polymer systems is challenging and requires considerable experience because of great variations in structures as well as length and time scales. This work describes Polymer Builder in CHARMM-GUI (http://www.charmm-gui.org/input/polymer), a web-based infrastructure that provides a generalized and automated process to build a relaxed polymer system. Polymer Builder not only provides versatile modeling methods to build complex polymer structures, but also generates realistic polymer melt and solution systems through the built-in coarse-grained model and all-atom replacement. The coarse-grained model parametrization is generalized and extensively validated with various experimental data and all-atom simulations. In addition, the capability of Polymer Builder for generating relaxed polymer systems is demonstrated by density calculations of 34 homopolymer melt systems, characteristic ratio calculations of 170 homopolymer melt systems, a morphology diagram of poly(styrene-b-methyl methacrylate) block copolymers, and self-assembly behavior of amphiphilic poly(ethylene oxide-b-ethylethane) block copolymers in water. We hope that Polymer Builder is useful to carry out innovative and novel polymer modeling and simulation research to acquire insight into structures, dynamics, and underlying mechanisms of complex polymer-containing systems.

16.
J Chem Inf Model ; 61(2): 831-839, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33442985

RESUMO

Hydrogen mass repartitioning (HMR) that permits time steps of all-atom molecular dynamics simulation up to 4 fs by increasing the mass of hydrogen atoms has been used in protein and phospholipid bilayers simulations to improve conformational sampling. Molecular simulation input generation via CHARMM-GUI now supports HMR for diverse simulation programs. In addition, considering ambiguous pH at the bacterial outer membrane surface, different protonation states, either -2e or -1e, of phosphate groups in lipopolysaccharides (LPS) are also supported in CHARMM-GUI LPS Modeler. To examine the robustness of HMR and the influence of protonation states of phosphate groups on LPS bilayer properties, eight different LPS-type all-atom systems with two phosphate protonation states are modeled and simulated utilizing both OpenMM 2-fs (standard) and 4-fs (HMR) schemes. Consistency in the conformational space sampled by standard and HMR simulations shows the reliability of HMR even in LPS, one of the most complex biomolecules. For systems with different protonation states, similar conformations are sampled with a PO41- or PO42- group, but different phosphate protonation states make slight impacts on lipid packing and conformational properties of LPS acyl chains. Systems with PO41- have a slightly smaller area per lipid and thus slightly more ordered lipid A acyl chains compared to those with PO42-, due to more electrostatic repulsion between PO42- even with neutralizing Ca2+ ions. HMR and different protonation states of phosphates of LPS available in CHARMM-GUI are expected to be useful for further investigations of biological systems of diverse origin.


Assuntos
Hidrogênio , Lipopolissacarídeos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Fosfatos , Reprodutibilidade dos Testes
17.
Glycobiology ; 31(5): 593-602, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33021626

RESUMO

Glypican-1 and its heparan sulfate (HS) chains play important roles in modulating many biological processes including growth factor signaling. Glypican-1 is bound to a membrane surface via a glycosylphosphatidylinositol (GPI)-anchor. In this study, we used all-atom molecular modeling and simulation to explore the structure, dynamics, and interactions of GPI-anchored glypican-1, three HS chains, membranes, and ions. The folded glypican-1 core structure is stable, but has substantial degrees of freedom in terms of movement and orientation with respect to the membrane due to the long unstructured C-terminal region linking the core to the GPI-anchor. With unique structural features depending on the extent of sulfation, high flexibility of HS chains can promote multi-site interactions with surrounding molecules near and above the membrane. This study is a first step toward all-atom molecular modeling and simulation of the glycocalyx, as well as its modulation of interactions between growth factors and their receptors.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Glipicanas/metabolismo , Heparitina Sulfato/metabolismo , Termodinâmica , Membrana Celular/química , Biologia Computacional , Glicosilfosfatidilinositóis/química , Glipicanas/química , Heparitina Sulfato/química , Humanos , Modelos Moleculares , Estrutura Molecular
18.
J Chem Theory Comput ; 16(11): 7207-7218, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112150

RESUMO

Alchemical free energy simulations have long been utilized to predict free energy changes for binding affinity and solubility of small molecules. However, while the theoretical foundation of these methods is well established, seamlessly handling many of the practical aspects regarding the preparation of the different thermodynamic end states of complex molecular systems and the numerous processing scripts often remains a burden for successful applications. In this work, we present CHARMM-GUI Free Energy Calculator (http://www.charmm-gui.org/input/fec) that provides various alchemical free energy perturbation molecular dynamics (FEP/MD) systems with input and post-processing scripts for NAMD and GENESIS. Four submodules are available: Absolute Ligand Binder (for absolute ligand binding FEP/MD), Relative Ligand Binder (for relative ligand binding FEP/MD), Absolute Ligand Solvator (for absolute ligand solvation FEP/MD), and Relative Ligand Solvator (for relative ligand solvation FEP/MD). Each module is designed to build multiple systems of a set of selected ligands at once for high-throughput FEP/MD simulations. The capability of Free Energy Calculator is illustrated by absolute and relative solvation FEP/MD of a set of ligands and absolute and relative binding FEP/MD of a set of ligands for T4-lysozyme in solution and the adenosine A2A receptor in a membrane. The calculated free energy values are overall consistent with the experimental and published free energy results (within ∼1 kcal/mol). We hope that Free Energy Calculator is useful to carry out high-throughput FEP/MD simulations in the field of biomolecular sciences and drug discovery.


Assuntos
Modelos Moleculares , Solventes/química , Descoberta de Drogas , Ligantes , Receptores A2 de Adenosina/química , Receptores A2 de Adenosina/metabolismo , Termodinâmica
19.
J Chem Phys ; 153(3): 035103, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716185

RESUMO

As part of our ongoing efforts to support diverse force fields and simulation programs in CHARMM-GUI, this work presents the development of FF-Converter to prepare Amber simulation inputs with various Amber force fields within the current CHARMM-GUI workflow. The currently supported Amber force fields are ff14SB/ff19SB (protein), Bsc1 (DNA), OL3 (RNA), GLYCAM06 (carbohydrate), Lipid17 (lipid), GAFF/GAFF2 (small molecule), TIP3P/TIP4P-EW/OPC (water), and 12-6-4 ions, and more will be added if necessary. The robustness and usefulness of this new CHARMM-GUI extension are demonstrated by two exemplary systems: a protein/N-glycan/ligand/membrane system and a protein/DNA/RNA system. Currently, CHARMM-GUI supports the Amber force fields only for the Amber program, but we will expand the FF-Converter functionality to support other simulation programs that support the Amber force fields.


Assuntos
Simulação de Dinâmica Molecular , Software , Conformação Proteica
20.
J Phys Chem B ; 124(28): 5948-5956, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32476421

RESUMO

Enterobacterial common antigen (ECA) is a surface glycolipid shared by all members of the Enterobacteriaceae family. In addition to lipopolysaccharides (LPS), ECA is an important component in the outer membrane (OM) of Gram-negative bacteria, making the OM an effective, selective barrier against the permeation of toxic molecules. Previous modeling and simulation studies represented OMs exclusively with LPS in the outer leaflet. In this work, various ECA molecules were first modeled and incorporated into symmetric bilayers with LPS in different ratios, and all-atom molecular dynamics simulations were conducted to investigate the properties of the mixed bilayers mimicking OM outer leaflets. Dynamic and flexible conformational ensembles are sampled for each ECA/LPS system. Incorporation of ECALPS (an LPS core-linked form) and ECAPG (a phosphatidylglycerol-linked form) affects lipid packing and ECA/LPS distributions on the bilayer surface. Hydrophobic thickness and chain order parameter analyses indicate that incorporation of ECAPG makes the acyl chains of LPS more flexible and disordered and thus increases the area per lipid of LPS. The calculated area per lipid of each ECA/LPS provides a good estimate for building more realistic OMs with different ratios of ECA/LPS, which will be useful in order to characterize their interactions with outer membrane proteins in more realistic OMs.


Assuntos
Membrana Externa Bacteriana , Lipopolissacarídeos , Antígenos de Bactérias , Enterobacteriaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA