Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Adv Sci (Weinh) ; : e2309702, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704672

RESUMO

This paper presents the first scanning electron microscopy (SEM)-based DNA imaging in biological samples. This novel approach incorporates a metal-free electro-stain reagent, formulated by combining DNA-binding proteins and synthetic polymers to enhance the visibility of 2-nm-thick DNA under SEM. Notably, DNA molecules stain with proteins and polymers appear as dark lines under SEM. The resulting DNA images exhibit a thickness of 15.0±4.0 nm. As SEM is the primary platform, it integrates seamlessly with various chemically functionalized large surfaces with the aid of microfluidic devices. The approach allows high-resolution imaging of various DNA structures including linear, circular, single-stranded DNA and RNA, originating from nuclear and mitochondrial genomes. Furthermore, quantum dots are successfully visualized as bright labels that are sequence-specifically incorporated into DNA molecules, which highlights the potential for SEM-based optical DNA mapping. In conclusion, DNA imaging using SEM with the novel electro-stain offers electron microscopic resolution with the ease of optical microscopy.

2.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395283

RESUMO

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Microesferas , Quitosana/farmacologia , Ácido Poliglicólico/farmacologia , Ácido Láctico/farmacologia , Glicóis , Preparações de Ação Retardada/farmacologia , Células Cultivadas , Diferenciação Celular , Condrogênese
3.
Int J Biol Macromol ; 256(Pt 2): 128427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016615

RESUMO

Biological macromolecules such as proteins and DNA are known to self-assemble into various structural moieties with distinct functions. While nucleic acids are the structural building blocks, peptides exemplify diversity as tailorable biochemical units. Thus, combining the scaffold properties of the biomacromolecule DNA and the functionality of peptides could evolve into a powerful method to obtain tailorable nano assemblies. In this review, we discuss the assembly of non-DNA-coated colloidal NPs on DNA/peptide templates using functional anchors. We begin with strategies for directly attaching metallic NPs to DNA templates to ascertain the functional role of DNA as a scaffold. Followed by methods to assemble peptides onto DNA templates to emphasize the functional versatility of biologically abundant DNA-binding peptides. Next, we focus on studies corroborating peptide self-assembling into macromolecular templates onto which NPs can attach to emphasize the properties of NP-binding peptides. Finally, we discuss the assembly of NPs on a DNA template with a focus on the bifunctional DNA-binding peptides with NP-binding affinity (peptide anchors). This review aims to highlight the immense potential of combining the functional power of DNA scaffolds and tailorable functionalities of peptides for NP assembly and the need to utilize them effectively to obtain tailorable hierarchical NP assemblies.


Assuntos
Nanopartículas , Nanopartículas/química , DNA/química , Substâncias Macromoleculares , Peptídeos/química
4.
Bioact Mater ; 33: 262-278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38076650

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic inflammatory and fibrotic response-driven lung disease that is difficult to cure because it manifests excessive profibrotic cytokines (e.g., TGF-ß), activated myofibroblasts, and accumulated extracellular matrix (ECM). In an attempt to develop an inhalation formulation with enhanced antifibrotic efficacy, we sought to fabricate unique aerosolizable inhaled microgels (µGel) that contain nintedanib-poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs; n-PN) and pirfenidone-liposomes (p-LP). The aero-µGel was ∼12 µm, resisted phagocytosis by alveolar macrophages in vitro and in vivo, and protected inner-entrapped n-PN and p-LP. The n-PN/p-LP@aero-µGel caused enhanced/extended antifibrotic efficacy in a bleomycin-induced pulmonary fibrosis mouse presumably due to prolonged lung residence. Consequently, the results obtained by intratracheal aerosol insufflation of our n-PN/p-LP@aero-µGel twice a week were much better than those by as many as seven doses of single or mixed applications of n-PN or p-LP. The antifibrotic/pharmacokinetic results for the n-PN/p-LP@aero-µGel included reduced fibrosis progression, restored lung physiological functions, deactivated myofibroblasts, inhibited TGF-ß progression, and suppressed ECM component production (collagen I and α-SMA) along with prolonged lung retention time. We believe that our n-PN/p-LP@aero-µGel increased the local availability of both nintedanib and pirfenidone due to evasion of alveolar macrophage phagocytosis and prolonged lung retention with reduced systemic distribution. Through this approach, our inhalation formulation subsequently attenuated fibrosis progression and improved lung function. Importantly, these results hold profound implications in the therapeutic potential of our n-PN/p-LP@aero-µGel to serve as a clinically promising platform, providing significant advancements for improved treatment of many respiratory diseases including IFP.

5.
Front Mol Biosci ; 10: 1288686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033388

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.

6.
ACS Appl Mater Interfaces ; 15(16): 19785-19806, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37067786

RESUMO

Gold nanoparticles (AuNPs) are useful nanomaterials as transducers for colorimetric sensors because of their high extinction coefficient and ability to change color depending on aggregation status. Therefore, over the past few decades, AuNP-based colorimetric sensors have been widely applied in several environmental and biological applications, including the detection of water pollutants. According to various studies, water pollutants are classified into heavy metals or cationic metal ions, toxins, and pesticides. Notably, many researchers have been interested in AuNP that detect water pollutants with high sensitivity and selectivity, while offering no adverse environmental issues in terms of AuNP use. This review provides a representative overview of AuNP-based colorimetric sensors for detecting several water pollutants. In particular, we emphasize the advantages of AuNP as colorimetric transducers for water pollutant detection in terms of their low toxicity, high stability, facile processability, and unique optical properties. Next, we discuss the status quo and future prospects of AuNP-based colorimetric sensors for the detection of water pollutants. We believe that this review will promote research and development of AuNP as next-generation colorimetric transducers for water pollutant detection.

7.
Int J Biol Macromol ; 234: 123725, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822151

RESUMO

Hydrogel-based electrolytes for flexible solid-state supercapacitors (SSCs) have received significant attention due to their mechanical robustness and stable electrochemical performance over a wide temperature range. However, achieving flame retardancy in such SSCs at subzero temperatures to increase their practical utility remains challenging. Furthermore, there is a need for sustainable and bio-friendly SSCs that use natural polymer-based hydrogel electrolytes. This study reports a novel approach for developing a chitosan-reinforced anti-freezing ionic conductive gelatin hydrogel to meet these demands. Immersion of chitosan-containing gelatin hydrogels in salt solutions caused chitosan precipitation, resulting in composite hydrogels. The precipitated chitosan contributes to the reinforcement of the gelatin hydrogel network, resulting in a high mechanical toughness of up to 3.81 MJ/m3, a fracture energy of 26 kJ/m2, anti-freezing properties (below -30 °C), and excellent flame retardancy without softening. Furthermore, the hydrogel exhibits excellent electrochemical performance, with an ionic conductivity ranging from 72 mS/cm at room temperature (26 °C) to 39 mS/cm at -30 °C. The proposed hydrogel exhibits potential for use in SSC as a gel polymer electrolyte. This study demonstrates a novel strategy for controlling the mechanical, thermal, and electrochemical characteristics of flexible supercapacitors using biological macromolecules.


Assuntos
Quitosana , Retardadores de Chama , Gelatina , Hidrogéis , Eletrólitos , Polímeros
8.
Adv Healthc Mater ; 12(2): e2201665, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36213983

RESUMO

Materials with physicochemical properties and biological activities similar to those of the natural extracellular matrix are in high demand in tissue engineering. In particular, Mo3 Se3 - inorganic molecular wire (IMW) is a promising material composed of bioessential minerals and possess nanometer-scale diameters, negatively charged surfaces, physical flexibility, and nanotopography characteristics, which are essential for interactions with cell membrane proteins. Here, an implantable 3D Mo3 Se3 - IMW enhanced gelatin-GMA/silk-GMA hydrogel (IMW-GS hydrogel) is developed for osteogenesis and bone formation, followed by biological evaluations. The mechanical properties of the 3D printed IMW-GS hydrogel are improved by noncovalent interactions between the Mo3 Se3 - IMWs and the positively charged residues of the gelatin molecules. Long-term biocompatibility with primary human osteoblast cells (HOBs) is confirmed using the IMW-GS hydrogel. The proliferation, osteogenic gene expression, collagen accumulation, and mineralization of HOBs improve remarkably with the IMW-GS hydrogel. In in vivo evaluations, the IMW-GS hydrogel implantation exhibits a significantly improved new bone regeneration of 87.8 ± 5.9% (p < 0.05) for 8 weeks, which is higher than that from the gelatin-GMA/silk-GMA hydrogel without Mo3 Se3 - IMW. These results support a new improved strategy with in vitro and in vivo performance of 3D IMW enhanced scaffolds in tissue engineering.


Assuntos
Hidrogéis , Alicerces Teciduais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Alicerces Teciduais/química , Gelatina/farmacologia , Regeneração Óssea , Engenharia Tecidual/métodos , Osteogênese , Seda , Impressão Tridimensional
9.
Biomater Res ; 26(1): 42, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068587

RESUMO

BACKGROUND: Bone regeneration research is currently ongoing in the scientific community. Materials approved for clinical use, and applied to patients, have been developed and produced. However, rather than directly affecting bone regeneration, these materials support bone induction, which regenerates bone. Therefore, the research community is still researching bone tissue regeneration. In the papers published so far, it is hard to find an improvement in the theory of bone regeneration. This review discusses the relationship between the existing theories on hard tissue growth and regeneration and the biomaterials developed so far for this purpose and future research directions. MAINBODY: Highly complex nucleation and crystallization in hard tissue involves the coordinated action of ions and/or molecules that can produce different organic and inorganic composite biomaterials. In addition, the healing of bone defects is also affected by the dynamic conditions of ions and nutrients in the bone regeneration process. Inorganics in the human body, especially calcium- and/or phosphorus-based materials, play an important role in hard tissues. Inorganic crystal growth is important for treating or remodeling the bone matrix. Biomaterials used in bone tissue regeneration require expertise in various fields of the scientific community. Chemical knowledge is indispensable for interpreting the relationship between biological factors and their formation. In addition, sources of energy for the nucleation and crystallization processes of such chemical bonds and minerals that make up the bone tissue must be considered. However, the exact mechanism for this process has not yet been elucidated. Therefore, a convergence of broader scientific fields such as chemistry, materials, and biology is urgently needed to induce a distinct bone tissue regeneration mechanism. CONCLUSION: This review provides an overview of calcium- and/or phosphorus-based inorganic properties and processes combined with organics that can be regarded as matrices of these minerals, namely collagen molecules and collagen fibrils. Furthermore, we discuss how this strategy can be applied to future bone tissue regenerative medicine in combination with other academic perspectives.

10.
Biomicrofluidics ; 16(4): 044102, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35909647

RESUMO

Systematic evolution of ligands by exponential enrichment (SELEX) is a method that is generally used for developing aptamers, which have arisen the promising alternatives for antibodies. However, conventional SELEX methods have limitations, such as a limited selection of target molecules, time-consuming and complex fabrication processes, and labor-intensive processes, which result in low selection yields. Here, we used (i) graphene oxide (GO)-coated magnetic nanoparticles in the selection process for separation and label-free detection and (ii) a multilayered microfluidic device manufactured using a three-dimensionally printed mold that is equipped with automated control valves to achieve precise fluid flows. The developed on-chip aptamer selection device and GO-coated magnetic nanoparticles were used to screen aptamer candidates for adenosine in eight cycles of the selection process within approximately 2 h for each cycle. Based on results from isothermal titration calorimetry, an aptamer with a dissociation constant of 18.6 ± 1.5 µM was selected. Therefore, the on-chip platform based on GO-coated magnetic nanoparticles provides a novel label-free screening technology for biosensors and micro/nanobiotechnology for achieving high-quality aptamers.

11.
ACS Nano ; 16(7): 10042-10065, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35704786

RESUMO

Whitening agents, such as hydrogen peroxide and carbamide peroxide, are currently used in clinical applications for dental esthetic and dental care. However, the free radicals generated by whitening agents cause pathological damage; therefore, their safety issues remain controversial. Furthermore, whitening agents are known to be unstable and short-lived. Since 2001, nanoparticles (NPs) have been researched for use in tooth whitening. Importantly, nanoparticles not only function as abrasives but also release reactive oxygen species and help remineralization. This review outlines the historical development of several NPs based on their whitening effects and side effects. NPs can be categorized into metals or metal oxides, ceramic particles, graphene oxide, and piezoelectric particles. Moreover, the status quo and future prospects are discussed, and recent progress in the development of NPs and their applications in various fields requiring tooth whitening is examined. This review promotes the research and development of next-generation NPs for use in tooth whitening.


Assuntos
Clareadores , Nanopartículas , Clareadores Dentários , Clareadores Dentários/uso terapêutico , Peróxidos , Ureia , Peróxido de Hidrogênio
12.
Int J Biol Macromol ; 209(Pt B): 1665-1675, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487373

RESUMO

Current hydrogel strain sensors have met assorted essential requirements of wearing comfort, mechanical toughness, and strain sensitivity. However, an increment in the toughness of a hydrogel usually leads to an increase in elastic moduli that could be unfavorable for wearing comfort. In addition, traits of biofriendly and sustainability require synthesis of the hydrogels from natural polymer-based networks. We propose a novel strategy to fabricate an ionic conductive organohydrogel from natural biological macromolecule "gelatin" and polyacid "tannic acid" to resolve these challenges. Tannic acid modified the structure of the gelatin network in the ionic conductive organohydrogels, that not only led to an increase in toughness accompanying a decrease in elastic moduli but also headed to higher strain sensitivity and tunability. The proposed methodology exhibited tunable tensile modulus from 27 to 13 kPa, tensile strength from 287 to 325 kPa, elongation at fracture from 510 to 620%, toughness from 500 to 550 kJ/m3, conductivity from 0.29 to 0.8 S/m, and strain sensitivity (GF = 1.4-6.5). Moreover, the proposed organohydrogel exhibited excellent freezing tolerance. This study provides a facile yet powerful strategy to tune the mechanical and electrical properties of organohydrogels which can be adapted to various wearable sensors.


Assuntos
Gelatina , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Hidrogéis/química , Íons , Taninos
13.
Biomater Res ; 26(1): 7, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216625

RESUMO

BACKGROUND: A considerable number of studies has been carried out to develop alloplastic bone graft materials such as hydroxyapatite (HAP) that mimic the hierarchical structure of natural bones with multiple levels of pores: macro-, micro-, and nanopores. Although nanopores are known to play many essential roles in natural bones, only a few studies have focused on HAPs containing them; none of those studies investigated the functions of nanopores in biological systems. METHOD: We developed a simple yet powerful method to introduce nanopores into alloplastic HAP bone graft materials in large quantities by simply pressing HAP nanoparticles and sintering them at a low temperature. RESULTS: The size of nanopores in HAP scaffolds can be controlled between 16.5 and 30.2 nm by changing the sintering temperature. When nanopores with a size of ~ 30.2 nm, similar to that of nanopores in natural bones, are introduced into HAP scaffolds, the mechanical strength and cell proliferation and differentiation rates are significantly increased. The developed HAP scaffolds containing nanopores (SNPs) are biocompatible, with negligible erythema and inflammatory reactions. In addition, they enhance the bone regeneration when are implanted into a rabbit model. Furthermore, the bone regeneration efficiency of the HAP-based SNP is better than that of a commercially available bone graft material. CONCLUSION: Nanopores of HAP scaffolds are very important for improving the bone regeneration efficiency and may be one of the key factors to consider in designing highly efficient next-generation alloplastic bone graft materials.

14.
ACS Appl Mater Interfaces ; 13(33): 39135-39141, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374274

RESUMO

Many physiochemical properties of the extracellular matrix (ECM) of muscle tissues, such as nanometer scale dimension, nanotopography, negative charge, and elasticity, must be carefully reproduced to fabricate scaffold materials mimicking muscle tissues. Hence, we developed a muscle tissue ECM-mimicking scaffold using Mo6S3I6 inorganic molecular wires (IMWs). Composed of bio-essential elements and having a nanofibrous structure with a diameter of ∼1 nm and a negative surface charge with high stability, Mo6S3I6 IMWs are ideal for mimicking natural ECM molecules. Once Mo6S3I6 IMWs were patterned on a polydimethylsiloxane surface with an elasticity of 1877.1 ± 22.2 kPa, that is, comparable to that of muscle tissues, the proliferation and α-tubulin expression of myoblasts enhanced significantly. Additionally, the repetitive one-dimensional patterns of Mo6S3I6 IMWs induced the alignment and stretching of myoblasts with enhanced α-tubulin expression and differentiation into myocytes. This study demonstrates that Mo6S3I6 IMWs are promising for mimicking the ECM of muscle tissues.


Assuntos
Materiais Biomiméticos/química , Dimetilpolisiloxanos/química , Matriz Extracelular/metabolismo , Nanofios/química , Alicerces Teciduais/química , Materiais Biomiméticos/metabolismo , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Iodo/química , Molibdênio/química , Músculos/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Enxofre/química , Propriedades de Superfície , Engenharia Tecidual , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
ACS Appl Mater Interfaces ; 13(19): 22935-22945, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33949843

RESUMO

The development of eco-friendly flame retardants is crucial due to the hazardous properties of most conventional flame retardants. Herein, adenosine triphosphate (ATP) is reported to be a highly efficient "all-in-one" green flame retardant as it consists of three essential groups, which lead to the formation of char with extreme intumescence, namely, three phosphate groups, providing an acid source; one ribose sugar, working as a char source; and one adenine, acting as a blowing agent. Polyurethane foam was used as a model flammable material to demonstrate the exceptional flame retardancy of ATP. The direct flammability tests have clearly shown that the ATP-coated polyurethane (PU) foam almost did not burn upon exposure to the torch flame. Importantly, ATP exhibits an extreme volume increase, whereas general phosphorus-based flame retardants show a negligible increase in volume. The PU foam coated with 30 wt % of ATP (PU-ATP 30 wt %) exhibits a significant reduction in the peak heat release rate (94.3%) with a significant increase in the ignition time, compared to bare PU. In addition, PU-ATP 30 wt % exhibits a high limiting oxygen index (LOI) value of 31% and HF-1 rating in the UL94 horizontal burning foamed material test. Additionally, we demonstrated that ATP's flame retardancy is sufficient for other types of matrices such as cotton, as confirmed from the results of the standardized ASTM D6413 test; cotton-ATP 30 wt % exhibits an LOI value of 32% and passes the vertical flame test. These results strongly suggest that ATP has great potential to be used as an "all-in-one" green flame retardant.

17.
Small ; 17(20): e2100257, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33838013

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes diseases ranging from skin infections to lethal sepsis and has become a serious threat to human health due to multiple-drug resistance (MDR). Therefore, a resistance-free antibacterial therapy is necessary to overcome MDR MRSA infections. In this study, an antibacterial nanorobot (Ab-nanobot) is developed wherein a cell wall-binding domain (CBD)-endolysin, acting as a sensor, is covalently conjugated with an actuator consisting of an iron oxide/silica core-shell. The CBD-endolysin sensor shows an excellent specificity to detect, bind, and accumulate on the S. aureus USA300 cell surface even in a bacterial consortium, and in host cell infections. Ab-nanobot specifically captures and kills MRSA in response to medically approved radiofrequency (RF) electromagnetic stimulation (EMS) signal. When Ab-nanobot receives the RF-EMS signal on the cell surface, actuator induces cell death in MRSA with 99.999% removal within 20 min by cell-wall damage via generation of localized heat and reactive oxygen species. The in vivo efficacy of Ab-nanobot is proven using a mice subcutaneous skin infection model. Collectively, this study offers a nanomedical resistance-free strategy to overcome MDR MRSA infections by providing a highly specific nanorobot for S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Preparações Farmacêuticas , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
18.
Sci Rep ; 11(1): 176, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420413

RESUMO

In this research, dispersion of a new type of one-dimensional inorganic material Nb2Se9, composed of van der Waals bonds, in aqueous solution for bio-application study were studied. To disperse Nb2Se9, which exhibits hydrophobic properties in water, experiments were carried out using a block copolymer (poloxamer) as a dispersant. It was confirmed that PPO, the hydrophobic portion of Poloxamer, was adsorbed onto the surface of Nb2Se9, and PEO, the hydrophilic portion, induced steric hinderance to disperse Nb2Se9 to a size of 10 nm or less. To confirm the adaptability of muscle cells C2C12 to the dispersed Nb2Se9 using poloxamer 188 as dispersant, a MTT assay and a live/dead assay were performed, demonstrating improvement in the viability and proliferation of C2C12 cells.

19.
ACS Nano ; 14(12): 17125-17133, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33231065

RESUMO

Although transmission electron microscopy (TEM) may be one of the most efficient techniques available for studying the morphological characteristics of nanoparticles, analyzing them quantitatively in a statistical manner is exceedingly difficult. Herein, we report a method for mass-throughput analysis of the morphologies of nanoparticles by applying a genetic algorithm to an image analysis technique. The proposed method enables the analysis of over 150,000 nanoparticles with a high precision of 99.75% and a low false discovery rate of 0.25%. Furthermore, we clustered nanoparticles with similar morphological shapes into several groups for diverse statistical analyses. We determined that at least 1,500 nanoparticles are necessary to represent the total population of nanoparticles at a 95% credible interval. In addition, the number of TEM measurements and the average number of nanoparticles in each TEM image should be considered to ensure a satisfactory representation of nanoparticles using TEM images. Moreover, the statistical distribution of polydisperse nanoparticles plays a key role in accurately estimating their optical properties. We expect this method to become a powerful tool and aid in expanding nanoparticle-related research into the statistical domain for use in big data analysis.

20.
J Funct Biomater ; 11(4)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023048

RESUMO

The tailored manipulation of ceramic surfaces gained recent interest to optimize the performance and lifetime of composite materials used as implants. In this work, a hierarchical surface texturing of hydroxyapatite (HAp) ceramics was developed to improve the poor adhesive bonding strength in hydroxyapatite and polycaprolactone (HAp/PCL) composites. Four different types of periodic surface morphologies (grooves, cylindric pits, linear waves and Gaussian hills) were realized by a ceramic micro-transfer molding technique in the submillimeter range. A subsequent surface roughening and functionalization on a micron to nanometer scale was obtained by two different etchings with hydrochloric and tartaric acid. An ensuing silane coupling with 3-aminopropyltriethoxysilane (APTES) enhanced the chemical adhesion between the HAp surface and PCL on the nanometer scale by the formation of dipole-dipole interactions and covalent bonds. The adhesive bonding strengths of the individual and combined surface texturings were investigated by performing single-lap compressive shear tests. All individual texturing types (macro, micro and nano) showed significantly improved HAp/PCL interface strengths compared to the non-textured HAp reference, based on an enhanced mechanical, physical and chemical adhesion. The independent effect mechanisms allow the deliberately hierarchical combination of all texturing types without negative influences. The hierarchical surface-textured HAp showed a 6.5 times higher adhesive bonding strength (7.7 ± 1.5 MPa) than the non-textured reference, proving that surface texturing is an attractive method to optimize the component adhesion in composites for potential medical implants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA