Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(8): 2208-2223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533822

RESUMO

This study presents the vascularized tissue on mesh-assisted platform (VT-MAP), a novel microfluidic in vitro model that uses an open microfluidic principle for cultivating vascularized organoids. Addressing the gap in 3D high-throughput platforms for drug response analysis, the VT-MAP can host tumor clusters of various sizes, allowing for precise, size-dependent drug interaction assessments. Key features include capability for forming versatile co-culture conditions (EC, fibroblasts and colon cancer organoids) that enhance tumor organoid viability and a perfusable vessel network that ensures efficient drug delivery and maintenance of organoid health. The VT-MAP enables the culture and analysis of organoids across a diverse size spectrum, from tens of microns to several millimeters. The VT-MAP addresses the inconsistencies in traditional organoid testing related to organoid size, which significantly impacts drug response and viability. Its ability to handle various organoid sizes leads to results that more accurately reflect patient-derived xenograft (PDX) models and differ markedly from traditional in vitro well plate-based methods. We introduce a novel image analysis algorithm that allows for quantitative analysis of organoid size-dependent drug responses, marking a significant step forward in replicating PDX models. The PDX sample from a positive responder exhibited a significant reduction in cell viability across all organoid sizes when exposed to chemotherapeutic agents (5-FU, oxaliplatin, and irinotecan), as expected for cytotoxic drugs. In sharp contrast, PDX samples of a negative responder showed little to no change in viability in smaller clusters and only a slight reduction in larger clusters. This differential response, accurately replicated in the VT-MAP, underscores its ability to generate data that align with PDX models and in vivo findings. Its capacity to handle various organoid sizes leads to results that more accurately reflect PDX models and differ markedly from traditional in vitro methods. The platform's distinct advantage lies in demonstrating how organoid size can critically influence drug response, revealing insights into cancer biology previously unattainable with conventional techniques.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Telas Cirúrgicas , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Modelos Animais de Doenças , Organoides/patologia
2.
Lab Chip ; 24(4): 751-763, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38193617

RESUMO

Despite significant advancements in three-dimensional (3D) cell culture technology and the acquisition of extensive data, there is an ongoing need for more effective and dependable data analysis methods. These concerns arise from the continued reliance on manual quantification techniques. In this study, we introduce a microphysiological system (MPS) that seamlessly integrates 3D cell culture to acquire large-scale imaging data and employs deep learning-based virtual staining for quantitative angiogenesis analysis. We utilize a standardized microfluidic device to obtain comprehensive angiogenesis data. Introducing Angio-Net, a novel solution that replaces conventional immunocytochemistry, we convert brightfield images into label-free virtual fluorescence images through the fusion of SegNet and cGAN. Moreover, we develop a tool capable of extracting morphological blood vessel features and automating their measurement, facilitating precise quantitative analysis. This integrated system proves to be invaluable for evaluating drug efficacy, including the assessment of anticancer drugs on targets such as the tumor microenvironment. Additionally, its unique ability to enable live cell imaging without the need for cell fixation promises to broaden the horizons of pharmaceutical and biological research. Our study pioneers a powerful approach to high-throughput angiogenesis analysis, marking a significant advancement in MPS.


Assuntos
Angiogênese , Aprendizado Profundo , Técnicas de Cultura de Células
3.
Mater Today Bio ; 22: 100773, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664794

RESUMO

The human brain choroid plexus (ChP) is a highly organized secretory tissue with a complex vascular system and epithelial layers in the ventricles of the brain. The ChP is the body's principal source of cerebrospinal fluid (CSF); it also functions as a barrier to separate the blood from CSF, because the movement of CSF through the body is pulsatile in nature. Thus far, it has been challenging to recreate the specialized features and dynamics of the ChP in a physiologically relevant microenvironment. In this study, we recapitulated the ChP structure by developing a microfluidic chip in accordance with established design rules. Furthermore, we used image processing and analysis to mimic CSF flow dynamics within a rlcking system; we also used a hydrogel containing laminin to mimic brain extracellular matrix (ECM). Human ChP cells were cultured in the ChP-on-a-chip with in vivo-like CSF dynamic flow and an engineered ECM. The key ChP characteristics of capillaries, the epithelial layer, and secreted components were recreated in the adjusted microenvironment of our human ChP-on-a-chip. The drug screening capabilities of the device were observed through physiologically relevant drug responses from breast cancer cells that had spread in the ChP. ChP immune responses were also recapitulated in this device, as demonstrated by the motility and cytotoxic effects of macrophages, which are the most prevalent immune cells in the ChP. Our human ChP-on-a-chip will facilitate the elucidation of ChP pathophysiology and support the development of therapeutics to treat cancers that have metastasized into the ChP.

4.
Acta Biomater ; 165: 153-167, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243378

RESUMO

Tumor angiogenesis is regarded as a promising target for limiting cancer progression because tumor-associated vasculature supplies blood and provides a path for metastasis. Thus, in vitro recapitulation of vascularized tumors is critical to understand the pathology of cancer and identify the mechanisms by which tumor cells proliferate, metastasize, and respond to drugs. In this study, we microengineered a vascularized tumor spheroid (VTS) model to reproduce the pathological features of solid tumors. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Notably, the hybrid spheroids also exhibited expression profiles associated with aggressive behavior. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. With the VTS chip showing a progressive tumor phenotype, we validated the suppressive effects of axitinib on tumor growth and angiogenesis, which depended on exposure dose and time, highlighting the significance of tumor vascularization to predict the efficacy of anticancer drugs. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow. Thus, our VTS model is a valuable platform with which to investigate the interactions between tumor microenvironments and explore therapeutic strategies in cancer. STATEMENT OF SIGNIFICANCE: We conducted an integrative study within a vascularized tumor spheroid (VTS) model. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Through RNA sequencing, we elucidated that the tumor-EC hybrid spheroids exhibited expression profiles associated with aggressive behavior such as cancer progression, invasion and metastasis. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. We further validated the suppressive effects of axitinib on tumor growth and angiogenesis, depending on exposure dose and time. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Esferoides Celulares/patologia , Axitinibe/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Microambiente Tumoral
5.
Sci Rep ; 11(1): 19986, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620916

RESUMO

Microfluidics offers promising methods for aligning cells in physiologically relevant configurations to recapitulate human organ functionality. Specifically, microstructures within microfluidic devices facilitate 3D cell culture by guiding hydrogel precursors containing cells. Conventional approaches utilize capillary forces of hydrogel precursors to guide fluid flow into desired areas of high wettability. These methods, however, require complicated fabrication processes and subtle loading protocols, thus limiting device throughput and experimental yield. Here, we present a swift and robust hydrogel patterning technique for 3D cell culture, where preloaded hydrogel solution in a microfluidic device is aspirated while only leaving a portion of the solution in desired channels. The device is designed such that differing critical capillary pressure conditions are established over the interfaces of the loaded hydrogel solution, which leads to controlled removal of the solution during aspiration. A proposed theoretical model of capillary pressure conditions provides physical insights to inform generalized design rules for device structures. We demonstrate formation of multiple, discontinuous hollow channels with a single aspiration. Then we test vasculogenic capacity of various cell types using a microfluidic device obtained by our technique to illustrate its capabilities as a viable micro-manufacturing scheme for high-throughput cellular co-culture.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/instrumentação , Hidrogéis , Microfluídica/instrumentação , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Técnicas de Cocultura/métodos , Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Humanos , Microfluídica/métodos
6.
Hum Reprod ; 36(10): 2720-2731, 2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34363466

RESUMO

STUDY QUESTION: Can we reconstitute physiologically relevant 3-dimensional (3D) microengineered endometrium in-vitro model? SUMMARY ANSWER: Our representative microengineered vascularised endometrium on-a-chip closely recapitulates the endometrial microenvironment that consists of three distinct layers including epithelial cells, stromal fibroblasts and endothelial cells in a 3D extracellular matrix in a spatiotemporal manner. WHAT IS KNOWN ALREADY: Organ-on-a-chip, a multi-channel 3D microfluidic cell culture system, is widely used to investigate physiologically relevant responses of organ systems. STUDY DESIGN, SIZE, DURATION: The device consists of five microchannels that are arrayed in parallel and partitioned by array of micropost. Two central channels are for 3D culture and morphogenesis of stromal fibroblast and endothelial cells. In addition, the outermost channel is for the culture of additional endometrial stromal fibroblasts that secrete biochemical cues to induce directional pro-angiogenic responses of endothelial cells. To seed endometrial epithelial cells, on Day 8, Ishikawa cells were introduced to one of the two medium channels to adhere on the gel surface. After that, the microengineered endometrium was cultured for an additional 5-6 days (total ∼ 14 days) for the purpose of each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Microfluidic 3D cultures were maintained in endothelial growth Medium 2 with or without oestradiol and progesterone. Some cultures additionally received exogenous pro-angiogenic factors. For the three distinct layers of microengineered endometrium-on-a-chip, the epithelium, stroma and blood vessel characteristics and drug response of each distinct layer in the microfluidic model were assessed morphologically and biochemically. The quantitative measurement of endometrial drug delivery was evaluated by the permeability coefficients. MAIN RESULTS AND THE ROLE OF CHANCE: We established microengineered vascularised endometrium-on-chip, which consists of three distinct layers: epithelium, stroma and blood vessels. Our endometrium model faithfully recapitulates in-vivo endometrial vasculo-angiogenesis and hormonal responses displaying key features of the proliferative and secretory phases of the menstrual cycle. Furthermore, the effect of the emergency contraception drug levonorgestrel was evaluated in our model demonstrating increased endometrial permeability and blood vessel regression in a dose-dependent manner. We finally provided a proof of concept of the multi-layered endometrium model for embryo implantation, which aids a better understanding of the molecular and cellular mechanisms underlying this process. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This report is largely an in-vitro study and it would be beneficial to validate our findings using human primary endometrial cells. WIDER IMPLICATIONS OF THE FINDINGS: Our 3D microengineered vascularised endometrium-on-a-chip provides a new in-vitro approach to drug screening and drug discovery by mimicking the complicated behaviours of human endometrium. Thus, we suggest our model as a tool for addressing critical challenges and unsolved problems in female diseases, such as endometriosis, uterine cancer and female infertility, in a personalised manner. STUDY FUNDING/COMPETING INTEREST(S): This work is supported by funding from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) to Y.J.K. (No. 2018R1C1B6003), to J.A. (No. 2020R1I1A1A01074136) and to H.S.K. (No. 2020R1C1C100787212). The authors report no conflicts of interest.


Assuntos
Células Endoteliais , Dispositivos Lab-On-A-Chip , Implantação do Embrião , Endométrio , Feminino , Humanos , Ciclo Menstrual
7.
Artigo em Inglês | MEDLINE | ID: mdl-31380359

RESUMO

Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.

8.
Lab Chip ; 19(17): 2822-2833, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31360969

RESUMO

The field of microfluidics-based three-dimensional (3D) cell culture system is rapidly progressing from academic proof-of-concept studies to valid solutions to real-world problems. Polydimethylsiloxane (PDMS)-based platform has been widely adopted as in vitro platforms for mimicking tumor microenvironment. However, PDMS has not been welcomed as a standardized commercial application for preclinical screening due to inherent material limitations that make it difficult to scale-up production. Here, we present an injection-molded plastic array 3D spheroid culture platform (Sphero-IMPACT). The platform is made of polystyrene (PS) in a standardized 96-well plate format with a user-friendly interface. This interface describes a simpler design that incorporates a tapered hole in the center of the rail to pattern a large spheroid with 3D extracellular matrix and various cell types. This hole is designed to accommodate standard pipette tip for automated system. The platform that mediate open microfluidics allows implement spontaneous fluid patterning with high repeatability from the end user. To demonstrate versatile use of the platform, we developed 3D perfusable blood vessel network and tumor spheroid assays. In addition, we established a tumor spheroid induced angiogenesis model that can be applicable for drug screening. Sphero-IMPACT has the potential to provide a robust and reproducible in vitro assay related to vascularized cancer research. This easy-to-use, ready-to-use platform can be translated into an enhanced preclinical model that faithfully reflects the complex tumor microenvironment.


Assuntos
Técnicas de Cultura de Células/normas , Glioblastoma/patologia , Técnicas Analíticas Microfluídicas/normas , Neovascularização Patológica/patologia , Esferoides Celulares/patologia , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA