Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 236: 718-733, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29454282

RESUMO

The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in biological endpoints associated with CEC exposure. CECs were present in all water samples and POCIS extracts. A total of 111 and 97 chemicals were detected in at least one water sample and POCIS extract, respectively. Known estrogenic chemicals were detected in water samples at all 16 sites and in POCIS extracts at 13 sites. Most sites elicited estrogenic activity in bioassays. Ranking sites and rivers based on water chemistry, POCIS chemistry, or total in vitro estrogenicity produced comparable patterns with the Cuyahoga River ranking as most and the Raquette River as least affected by CECs. Changes in biological responses grouped according to physiological processes, and differed between species but not sex. The Fox and Cuyahoga Rivers often had significantly different patterns in biological response Our study supports the need for multiple lines of evidence and provides a framework to assess CEC presence and effects in fish in the Laurentian Great Lakes basin.


Assuntos
Monitoramento Ambiental , Lagos/química , Poluentes Químicos da Água/toxicidade , Animais , Cyprinidae , Estrona , Compostos Orgânicos/análise , Praguicidas/análise , Rios , Poluentes Químicos da Água/análise
2.
PLoS One ; 12(9): e0182868, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28953889

RESUMO

Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) µg/L in water and 1.75 (diphenhydramine) to 20,800 µg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.


Assuntos
Monitoramento Ambiental/métodos , Lagos/análise , Poluentes Químicos da Água/análise , Análise por Conglomerados , Estados Unidos
3.
Environ Pollut ; 221: 427-436, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939634

RESUMO

Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17ß-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Animais , Cresóis , Cyprinidae/metabolismo , Estrona/análise , Expressão Gênica , Minnesota , Análise de Sequência com Séries de Oligonucleotídeos , Rios/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Wisconsin
4.
Environ Toxicol Chem ; 35(10): 2493-2502, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27027868

RESUMO

The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1 H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493-2502. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.


Assuntos
Cyprinidae/metabolismo , Monitoramento Ambiental/métodos , Lagos/química , Metabolômica/métodos , Poluentes Químicos da Água/metabolismo , Animais , Ecossistema , Great Lakes Region , Fígado/efeitos dos fármacos , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Toxicol Chem ; 35(3): 702-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332155

RESUMO

Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.


Assuntos
Cyprinidae , Disruptores Endócrinos/toxicidade , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/análise , Feminino , Expressão Gênica/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Gônadas/patologia , Masculino , Reprodução/efeitos dos fármacos , Esteroides/biossíntese , Vitelogeninas/biossíntese , Poluentes Químicos da Água/análise , Qualidade da Água
6.
Environ Sci Technol ; 48(4): 2385-94, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24409827

RESUMO

The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15,000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain-pituitary-gonadal-hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.


Assuntos
Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Transcriptoma/genética , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Purificação da Água , Animais , Cyprinidae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Análise de Componente Principal , Estações do Ano , Transcriptoma/efeitos dos fármacos
7.
J Environ Qual ; 41(5): 1459-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23099937

RESUMO

The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale ( = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams ( < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.


Assuntos
Agricultura , Organismos Aquáticos , Ecossistema , Rios , Qualidade da Água , Minnesota , Modelos Estatísticos
8.
J Hazard Mater ; 229-230: 29-35, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22742731

RESUMO

The antimicrobial agents triclosan (TCS), triclocarban (TCC) and their associated transformation products are of increasing concern as environmental pollutants due to their potential adverse effects on humans and wildlife, including bioaccumulation and endocrine-disrupting activity. Analysis by tandem mass spectrometry of 24 paired freshwater bed sediment samples (top 10 cm) collected by the U.S. Geological Survey near 12 wastewater treatment plants (WWTPs) in Minnesota revealed TCS and TCC concentrations of up to 85 and 822 ng/g dry weight (dw), respectively. Concentrations of TCS and TCC in bed sediments collected downstream of WWTPs were significantly greater than upstream concentrations in 58% and 42% of the sites, respectively. Dichloro- and non-chlorinated carbanilides (DCC and NCC) were detected in sediments collected at all sites at concentrations of up to 160 and 1.1 ng/g dw, respectively. Overall, antimicrobial concentrations were significantly higher in lakes than in rivers and creeks, with relative abundances decreasing from TCC>TCS>DCC>NCC. This is the first statewide report on the occurrence of TCS, TCC and TCC transformation products in freshwater sediments. Moreover, the results suggest biological or chemical TCC dechlorination products to be ubiquitous in freshwater environments of Minnesota, but whether this transformation occurs in the WWTP or bed sediment remains to be determined.


Assuntos
Anti-Infecciosos Locais/análise , Carbanilidas/análise , Triclosan/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Doce/análise , Sedimentos Geológicos/análise , Minnesota , Eliminação de Resíduos Líquidos
9.
Aquat Toxicol ; 82(1): 36-46, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17331597

RESUMO

On-site, continuous-flow experiments were conducted during August and October 2002 at a major metropolitan wastewater treatment plant (WWTP) to determine if effluent exposure induced endocrine disruption as manifested in the reproductive competence of sexually mature male fathead minnows (Pimephales promelas). The fathead minnows were exposed in parallel experiments to WWTP effluent and WWTP effluent treated with XAD8 macroreticular resin to remove the hydrophobic-neutral fraction which contained steroidal hormones, alkylphenolethoxylates (APEs), and other potential endocrine disrupting compounds (EDCs). The effluent composition varied on a temporal scale and the continuous-flow experiments captured the range of chemical variability that occurred during normal WWTP operations. Exposure to WWTP effluent resulted in vitellogenin induction in male fathead minnows, with greater response in October than in August. Concentrations of ammonia, APEs, 17beta-estradiol, and other EDCs also were greater in October than in August, reflecting a change in effluent composition. In the October experiment, XAD8 treatment significantly reduced vitellogenin induction in the male fathead minnows relative to the untreated effluent, whereas in August, XAD8 treatment had little effect. During both experiments, XAD8 treatment removed greater than 90% of the APEs. Exposure of fish to a mixture of APEs similar in composition and concentration to the WWTP effluent, but prepared in groundwater and conducted at a separate facility, elicited vitellogenin induction during both experiments. There was a positive relation between vitellogenin induction and hepatosomatic index (HSI), but not gonadosomatic index (GSI), secondary sexual characteristics index (SSCI), or reproductive competency. In contrast to expectations, the GSI and SSCI increased in males exposed to WWTP effluent compared to groundwater controls. The GSI, SSCI, and reproductive competency were positively affected by XAD8 treatment of the WWTP effluent.


Assuntos
Cyprinidae/fisiologia , Disruptores Endócrinos/intoxicação , Exposição Ambiental , Reprodução/fisiologia , Poluentes Químicos da Água/intoxicação , Animais , Disruptores Endócrinos/metabolismo , Feminino , Doenças dos Peixes/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Fenóis/química , Fenóis/intoxicação , Reprodução/efeitos dos fármacos , Resinas Vegetais/química , Resinas Vegetais/intoxicação , Estações do Ano , Testículo/efeitos dos fármacos , Testículo/fisiologia , Vitelogeninas/sangue , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
10.
Aquat Toxicol ; 79(3): 268-77, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16891002

RESUMO

The ubiquitous presence of nonylphenolethoxylate/octylphenolethoxylate (NPE/OPE) compounds in aquatic environments adjacent to wastewater treatment plants (WWTP) warrants an assessment of the endocrine disrupting potential of these complex mixtures on aquatic vertebrates. In this study, fathead minnow larvae were exposed for 64 days to a mixture of NPE/OPE, which closely models the NPE/OPE composition of a major metropolitan WWTP effluent. Target exposure concentrations included a total NPE/OPE mixture load of 200% of the WWTP effluent concentration (148microg/L), 100% of the WWTP effluent concentration (74microg/L) and 50% of the WWTP effluent concentration (38microg/L). The NPE/OPE mixture contained 0.2% 4-t-octylphenol, 2.8% 4-nonylphenol, 5.1% 4-nonylphenolmonoethoxylate, 9.3% 4-nonylphenoldiethoxylate, 0.9% 4-t-octylphenolmonoethoxylate, 3.1% 4-t-octylphenoldiethoxylate, 33.8% 4-nonylphenolmonoethoxycarboxylate, and 44.8% 4-nonylphenoldiethoxycarboxylate. An additional exposure of 5microg/L 4-nonylphenol (nominal) was conducted. The exposure utilized a flow-through system supplied by ground water and designed to deliver consistent concentrations of applied chemicals. Following exposure, larvae were raised to maturity. Upon sexual maturation, exposed male fish were allowed to compete with control males in a competitive spawning assay. Nest holding ability of control and exposed fish was carefully monitored for 7 days. All male fish were then sacrificed and analyzed for plasma vitellogenin, developmental changes in gonadal tissues, alterations in the development of secondary sexual characters, morphometric changes, and changes to reproductive behavior. When exposed to the 200% NPE/OPE treatment most larvae died within the first 4 weeks of exposure. Both the 100% and 50% NPE/OPE exposures caused a significant decrease in reproductive behavior, as indicated by an inability of many of the previously exposed males to acquire and hold a nest site required for reproduction. In contrast, the 5microg/L 4-nonylphenol exposure resulted in significantly enhanced reproductive behavior compared to that of control males and a majority of the nesting sites were held by previously exposed males. No significant change in the development of gonadal tissues was observed. The 100% NPE/OPE exposure resulted in a significant reduction in the gonadal somatic index and in the prominence of secondary sexual characteristics of exposed larvae. This study indicates that NPE/OPE mixtures have an effect on the reproductive competence of previously exposed male fathead minnows. In addition, 4-nonylphenol concentrations utilized in all exposures were below regulatory guidelines, suggesting that evaluation of 4-nonylphenol alone may not be sufficient for identifying potentially adverse effects of this suite of compounds usually found as mixtures in the aquatic environment.


Assuntos
Cyprinidae/fisiologia , Exposição Ambiental , Etilenoglicóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Gônadas/efeitos dos fármacos , Larva/efeitos dos fármacos , Masculino , Reprodução/efeitos dos fármacos , Razão de Masculinidade , Análise de Sobrevida , Fatores de Tempo , Vitelogeninas/análise , Vitelogeninas/efeitos dos fármacos
11.
J Environ Qual ; 32(3): 1025-35, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12809303

RESUMO

Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 microg L(-1)). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 microg L(-1)) was significantly greater than the total concentration of parent compounds (median of 0.26 microg L(-1)). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April-July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.


Assuntos
Acetamidas/metabolismo , Agricultura , Atrazina/metabolismo , Herbicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Acetamidas/análise , Atrazina/análise , Monitoramento Ambiental , Herbicidas/análise , Permeabilidade , Estações do Ano , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA