Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2314211, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558476

RESUMO

The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO1.8H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO1.8H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi5+, leading to increased metal-oxygen covalency and that the oxophilic Ce3+/4+ redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO1.8H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm-2. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.

2.
Small Methods ; : e2301728, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429243

RESUMO

Non-aqueous lithium-oxygen batteries (LOBs) have emerged as a promising candidate due to their high theoretical energy density and eco-friendly cathode reaction materials. However, LOBs still suffer from high overpotential and poor cycling stability resulting from difficulties in the decomposition of discharge reaction Li2 O2 products. Here, a 3D open network catalyst structure is proposed based on highly-thin and porous multi-metal oxide nanofibers (MMONFs) developed by a facile electrospinning approach coupled with a heat treatment process. The developed hierarchically interconnected 3D porous MMONFs catalyst structure with high specific surface area and porosity shows the enhanced electrochemical reaction kinetics associated with Li2 O2 formation and decomposition on the cathode surface during the charge and discharge processes. The uniquely assembled cathode materials with MMONFs exhibit excellent electrochemical performance with energy efficiency of 82% at a current density of 50 mA g-1 and a long-term cycling stability over 100 cycles at 200 mA g-1 with a cut-off capacity of 500 mAh g-1 . Moreover, the optimized cathode materials exhibit a remarkable energy density of 1013 Wh kg-1 at the 100th discharge and charge cycle, which is nearly four times higher than that of C/NMC721, which has the highest energy density among the cathode materials currently used in electric vehicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA