Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Syndromol ; 10(1-2): 58-73, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30976280

RESUMO

Craniosynostosis is a common craniofacial birth defect. This review focusses on the advances that have been achieved through studying the pathogenesis of craniosynostosis using mouse models. Classic methods of gene targeting which generate individual gene knockout models have successfully identified numerous genes required for normal development of the skull bones and sutures. However, the study of syndromic craniosynostosis has largely benefited from the production of knockin models that precisely mimic human mutations. These have allowed the detailed investigation of downstream events at the cellular and molecular level following otherwise unpredictable gain-of-function effects. This has greatly enhanced our understanding of the pathogenesis of this disease and has the potential to translate into improvement of the clinical management of this condition in the future.

2.
Dis Model Mech ; 11(11)2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30266836

RESUMO

FGFR2c regulates many aspects of craniofacial and skeletal development. Mutations in the FGFR2 gene are causative of multiple forms of syndromic craniosynostosis, including Crouzon syndrome. Paradoxically, mouse studies have shown that the activation (Fgfr2cC342Y; a mouse model for human Crouzon syndrome), as well as the removal (Fgfr2cnull), of the FGFR2c isoform can drive suture abolishment. This study aims to address the downstream effects of pathogenic FGFR2c signalling by studying the effects of Fgfr2c overexpression. Conditional overexpression of Fgfr2c (R26RFgfr2c;ßact) results in craniofacial hypoplasia as well as microtia and cleft palate. Contrary to Fgfr2cnull and Fgfr2cC342Y, Fgfr2c overexpression is insufficient to drive onset of craniosynostosis. Examination of the MAPK/ERK pathway in the embryonic sutures of Fgfr2cC342Y and R26RFgfr2c;ßact mice reveals that both mutants have increased pERK expression. The contrasting phenotypes between Fgfr2cC342Y and R26RFgfr2c;ßact mice prompted us to assess the impact of the Fgfr2c overexpression allele on the Crouzon mouse (Fgfr2cC342Y), in particular its effects on the coronal suture. Our results demonstrate that Fgfr2c overexpression is sufficient to partially rescue craniosynostosis through increased proliferation and reduced osteogenic activity in E18.5 Fgfr2cC342Y embryos. This study demonstrates the intricate balance of FGF signalling required for correct calvarial bone and suture morphogenesis, and that increasing the expression of the wild-type FGFR2c isoform could be a way to prevent or delay craniosynostosis progression.


Assuntos
Osso e Ossos/anormalidades , Osso e Ossos/patologia , Disostose Craniofacial/patologia , Craniossinostoses/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fosfatase Alcalina/metabolismo , Alelos , Animais , Proliferação de Células , Fissura Palatina/patologia , Microtia Congênita/genética , Microtia Congênita/patologia , Suturas Cranianas/patologia , Disostose Craniofacial/genética , Craniossinostoses/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação/genética , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Crânio/patologia
3.
Neurobiol Aging ; 36(2): 821-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25457554

RESUMO

There is an emerging evidence that growth factors may have a potential beneficial use in the treatment of Alzheimer's disease (AD) because of their neuroprotective properties and effects on neuronal proliferation. Basic fibroblast growth factor or fibroblast growth factor-2 (FGF2) is an anti-inflammatory, angiogenic, and neurotrophic factor that is expressed in many cell types, including neurons and glial cells. Here, we explored whether subcutaneous administration of FGF2 could have therapeutic effects in the APP 23 transgenic mouse, a model of amyloid pathology. FGF2 treatment attenuated spatial memory deficits, reduced amyloid-ß (Aß) and tau pathologies, decreased inducible nitric oxide synthase expression, and increased the number of astrocytes in the dentate gyrus in APP 23 mice compared with the vehicle-treated controls. The decrease in Aß deposition was associated with a reduction in the expression of BACE1, the main enzyme responsible for Aß generation. These results were confirmed in a neuroblastoma cell line, which demonstrated that incubation with FGF2 regulates BACE1 transcription. In addition, and in contrast with what has been previously published, the levels of FGF2 were reduced in postmortem brains from AD patients compared with controls. These data, therefore, suggest that systemic administration of FGF2 could have a potential therapeutic application in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/genética , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Injeções Subcutâneas , Masculino , Camundongos Transgênicos , Transcrição Gênica/efeitos dos fármacos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA