Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 17(5): 054106, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854890

RESUMO

Separation of blood components is required in many diagnostic applications and blood processes. In laboratories, blood is usually fractionated by manual operation involving a bulk centrifugation equipment, which significantly increases logistic burden. Blood sample processing in the field and resource-limited settings cannot be readily implemented without the use of microfluidic technology. In this study, we developed a small footprint, rapid, and passive microfluidic channel device that relied on margination and inertial focusing effects for blood component separation. No blood dilution, lysis, or labeling step was needed as to preserve sample integrity. One main innovation of this work was the insertion of fluidic restrictors at outlet ports to divert the separation interface into designated outlet channels. Thus, separation efficiency was significantly improved in comparison to previous works. We demonstrated different operation modes ranging from platelet or plasma extraction from human whole blood to platelet concentration from platelet-rich plasma through the manipulation of outlet port fluidic resistance. Using straight microfluidic channels with a high aspect ratio rectangular cross section, we demonstrated 95.4% platelet purity extracted from human whole blood. In plasma extraction, 99.9% RBC removal rate was achieved. We also demonstrated 2.6× concentration of platelet-rich plasma solution to produce platelet concentrate. The extraction efficiency and throughput rate are scalable with continuous and clog-free recirculation operation, in contrast to other blood fractionation approaches using filtration membranes or affinity-based purification methods. Our microfluidic blood separation method is highly tunable and versatile, and easy to be integrated into multi-step blood processing and advanced sample preparation workflows.

2.
Lab Chip ; 23(8): 2131-2140, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36974599

RESUMO

Human adipose tissue is a rich source of mesenchymal stem cells (MSCs). Human adipose-derived stem cells (ADSCs) are first prepared by tissue digestion of lipoaspirate. The remaining constituent contains a mixture of ADSCs, other cell types and lysed fragments. We have developed a scalable microfluidic sorter cascade which enabled high-throughput and label-free enrichment of ADSCs prepared from tissue-digested human adipose samples to improve the quality of purified stem cell product. The continuous microfluidic sorter cascade was composed of spiral-shaped inertial and deterministic lateral displacement (DLD) sorters which separated cells based on size difference. The cell count characterization results showed >90% separation efficiency. We also demonstrated that the enriched ADSC sub-population by the microfluidic sorter cascade yielded 6× enhancement of expansion capacity in tissue culture. The incorporation of this microfluidic sorter cascade into ADSC preparation workflow facilitates the generation of transplantation-scale stem cell product. We anticipate our stem cell microfluidic sorter cascade will find a variety of research and clinical applications in tissue engineering and regeneration medicine.


Assuntos
Adipócitos , Microfluídica , Humanos , Diferenciação Celular , Adipócitos/metabolismo , Tecido Adiposo , Células-Tronco/metabolismo
3.
JCI Insight ; 5(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31877118

RESUMO

Mutations in cardiac myosin binding protein C (MyBP-C, encoded by MYBPC3) are the most common cause of hypertrophic cardiomyopathy (HCM). Most MYBPC3 mutations result in premature termination codons (PTCs) that cause RNA degradation and a reduction of MyBP-C in HCM patient hearts. However, a reduction in MyBP-C has not been consistently observed in MYBPC3-mutant induced pluripotent stem cell cardiomyocytes (iPSCMs). To determine early MYBPC3 mutation effects, we used patient and genome-engineered iPSCMs. iPSCMs with frameshift mutations were compared with iPSCMs with MYBPC3 promoter and translational start site deletions, revealing that allelic loss of function is the primary inciting consequence of mutations causing PTCs. Despite a reduction in wild-type mRNA in all heterozygous iPSCMs, no reduction in MyBP-C protein was observed, indicating protein-level compensation through what we believe is a previously uncharacterized mechanism. Although homozygous mutant iPSCMs exhibited contractile dysregulation, heterozygous mutant iPSCMs had normal contractile function in the context of compensated MyBP-C levels. Agnostic RNA-Seq analysis revealed differential expression in genes involved in protein folding as the only dysregulated gene set. To determine how MYBPC3-mutant iPSCMs achieve compensated MyBP-C levels, sarcomeric protein synthesis and degradation were measured with stable isotope labeling. Heterozygous mutant iPSCMs showed reduced MyBP-C synthesis rates but a slower rate of MyBP-C degradation. These findings indicate that cardiomyocytes have an innate capacity to attain normal MyBP-C stoichiometry despite MYBPC3 allelic loss of function due to truncating mutations. Modulating MyBP-C degradation to maintain MyBP-C protein levels may be a novel treatment approach upstream of contractile dysfunction for HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Predisposição Genética para Doença/genética , Mutação , Alelos , Linhagem Celular , Códon sem Sentido , Mutação da Fase de Leitura , Edição de Genes , Heterozigoto , Humanos , Desenvolvimento Muscular/genética , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Sarcômeros/metabolismo , Transcriptoma
4.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875314

RESUMO

Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Animais Recém-Nascidos , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Haploinsuficiência , Humanos , Miocárdio/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Proteostase/genética , Ratos , Sarcômeros/patologia , Septo Interventricular/patologia
5.
Nat Commun ; 9(1): 1030, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531246

RESUMO

Directed evolution has long been a key strategy to generate enzymes with desired properties like high selectivity, but experimental barriers and analytical costs of screening enormous mutant libraries have limited such efforts. Here, we describe an ultrahigh-throughput dual-channel microfluidic droplet screening system that can be used to screen up to ~107 enzyme variants per day. As an example case, we use the system to engineer the enantioselectivity of an esterase to preferentially produce desired enantiomers of profens, an important class of anti-inflammatory drugs. Using two types of screening working modes over the course of five rounds of directed evolution, we identify (from among 5 million mutants) a variant with 700-fold improved enantioselectivity for the desired (S)-profens. We thus demonstrate that this screening platform can be used to rapidly generate enzymes with desired enzymatic properties like enantiospecificity, chemospecificity, and regiospecificity.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/genética , Archaeoglobus fulgidus/enzimologia , Evolução Molecular Direcionada/métodos , Esterases/química , Esterases/genética , Microfluídica/métodos , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/química , Archaeoglobus fulgidus/genética , Esterases/metabolismo , Evolução Molecular , Ibuprofeno/química , Ibuprofeno/metabolismo , Cinética , Modelos Moleculares , Estereoisomerismo , Especificidade por Substrato
6.
APL Bioeng ; 2(3): 032001, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31069318

RESUMO

Metastatic cancer cells migrate through constricted spaces and experience significant compressive stress, but mechanisms enabling migration in confined geometries remain unclear. Cancer cell migration within confined 3-dimensional (3D) microfluidic channels has been shown to be distinct from 2D cell migration. However, whether 3D confined migration can be manipulated by mechanosensory components has not been examined in detail. In this work, we exogenously introduced a mechanosensitive channel of large conductance (MscL) into metastatic breast cancer cells MDA-MB-231. We discovered that inducing expression of a gain-of-function G22S mutant of MscL in MDA-MB-231 cells significantly reduced spontaneous lung metastasis without affecting the growth of orthotopic tumor implants. To further investigate the effects of G22S MscL on cell migration, we designed a microfluidic device with channels of various cross-sections ranging from a 2D planar environment to narrow 3D constrictions. Both MscL G22S and control breast cancer cells migrated progressively slower in more constricted environments. Migration of cells expressing MscL G22S did not differ from control cells, even though MscL was activated in cells in constricted channels of 3 µm width. Interestingly, we found MscL expressing cells to be more frequently "stuck" at the entrance of the 3 µm channels and failed to migrate into the microchannel. Our work demonstrates the possibility of engineering mechanotransduction for controlling confined cell migration.

7.
Biomicrofluidics ; 10(5): 054105, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27703591

RESUMO

Various micro-engineered tools or platforms have been developed recently for cell mechanics studies based on acoustic, magnetic, and optical actuations. Compared with other techniques for single cell manipulations, microfluidics has the advantages with simple working principles and device implementations. In this work, we develop a multi-layer microfluidic pipette aspiration device integrated with pneumatically actuated microfluidic control valves. This configuration enables decoupling of cell trapping and aspiration, and hence causes less mechanical perturbation on trapped single cells before aspiration. A high trapping efficiency is achieved by the microfluidic channel design based on fluid resistance model and deterministic microfluidics. Compared to conventional micropipette aspiration, the suction pressure applied on the aspirating cells is highly stable due to the viscous nature of low Reynolds number flow. As a proof-of-concept of this novel microfluidic technology, we built a microfluidic pipette aspiration device with 2 × 13 trapping arrays and used this device to measure the stiffness of a human breast cancer cell line, MDA-MB-231, through the observation of cell deformations during aspiration. As a comparison, we studied the effect of Taxol, a FDA-approved anticancer drug on single cancer cell stiffness. We found that cancer cells treated with Taxol were less deformable with a higher Young's modulus. The multi-layer microfluidic pipette aspiration device is a scalable technology for single cell mechanophenotyping studies and drug discovery applications.

8.
Sci Rep ; 6: 32912, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27610921

RESUMO

All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.


Assuntos
Células Artificiais , Emulsões , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Biologia Sintética/métodos
9.
Lab Chip ; 15(1): 264-73, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25361042

RESUMO

Micropipette aspiration measures the mechanical properties of single cells. A traditional micropipette aspiration system requires a bulky infrastructure and has a low throughput and limited potential for automation. We have developed a simple microfluidic device which is able to trap and apply pressure to single cells in designated aspiration arrays. By changing the volume flow rate using a syringe pump, we can accurately exert a pressure difference across the trapped cells for pipette aspiration. By examining cell deformation and protrusion length into the pipette under an optical microscope, several important cell mechanical properties, such as the cortical tension and the Young's modulus, can be measured quantitatively using automated image analysis. Using the microfluidic pipette array, the stiffness of breast cancer cells and healthy breast epithelial cells was measured and compared. Finally, we applied our device to examine the gating threshold of the mechanosensitive channel MscL expressed in mammalian cells. Together, the development of a microfluidic pipette array could enable rapid mechanophenotyping of individual cells and for mechanotransduction studies.


Assuntos
Fenômenos Biomecânicos/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias/fisiopatologia , Linhagem Celular Tumoral , Módulo de Elasticidade/fisiologia , Desenho de Equipamento , Células HeLa , Humanos , Técnicas Analíticas Microfluídicas/métodos , Fenótipo
10.
J Nanotechnol Eng Med ; 5(4): 0408011-408016, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26155329

RESUMO

Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by micro/nanotechnology, several novel microfluidic devices have been developed recently with better accuracy, sensitivity, and throughput. Further technical advancements of microfluidics-based micropipette aspiration would have broad applications in both fundamental cell mechanics studies and for disease diagnostics.

11.
Lab Chip ; 12(19): 3566-75, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22878811

RESUMO

Microfluidic devices have undergone rapid development in recent years and provide a lab-on-a-chip solution for many biomedical and chemical applications. Optical imaging techniques are essential in microfluidics for observing and extracting information from biological or chemical samples. Traditionally, imaging in microfluidics is achieved by bench-top conventional microscopes or other bulky imaging systems. More recently, many novel compact microscopic techniques have been developed to provide a low-cost and portable solution. In this review, we provide an overview of optical imaging techniques used in microfluidics followed with their applications. We first discuss bulky imaging systems including microscopes and interferometer-based techniques, then we focus on compact imaging systems that can be better integrated with microfluidic devices, including digital in-line holography and scanning-based imaging techniques. The applications in biomedicine or chemistry are also discussed along with the specific imaging techniques.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Imagem Óptica/instrumentação , Animais , Células Sanguíneas/patologia , Holografia , Humanos , Microscopia , Imagem Óptica/métodos , Razão Sinal-Ruído , Tomografia de Coerência Óptica
12.
Opt Lett ; 37(2): 199-201, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22854466

RESUMO

A compact wavefront camera that allows users to quantitatively measure the intensity and wavefront at a remote object plane is reported. The camera is built from a chip-scale wavefront sensor that we previously developed. By measuring the wavefront of the image and calibrating the wavefront relationship between the image and object planes, the wavefront at the object plane can be computed and the surface normal of the object can be derived. We built a prototype camera and calibrated the wavefront relationship. In a proof-of-concept experiment, a set of concave mirrors with different focal lengths (50-200 mm), were imaged. The results agree well with their expected values. To demonstrate the application of the camera, we applied this method to measure the deformation of a microfluidic channel under pressure.


Assuntos
Dispositivos Ópticos , Fotografação/instrumentação , Técnicas Analíticas Microfluídicas , Propriedades de Superfície , Fatores de Tempo
13.
Lab Chip ; 11(21): 3698-702, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21935556

RESUMO

We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel's floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 µm FWHM). In our experiments, our established resolution was 1.0 µm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker(®).


Assuntos
Microscopia de Fluorescência , Laranja de Acridina/química , Células HeLa , Humanos , Análise em Microsséries , Técnicas Analíticas Microfluídicas , Pontos Quânticos
14.
Opt Lett ; 35(13): 2188-90, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596189

RESUMO

We have developed a new microscopy design that can achieve wide field-of-view (FOV) imaging and yet possesses resolution that is comparable to a conventional microscope. In our design, the sample is illuminated by a holographically projected light-spot grid. We acquire images by translating the sample across the grid and detecting the transmissions. We have built a prototype system with an FOV of 6 mm x 5 mm and acquisition time of 2.5 s. The resolution is fundamentally limited by the spot size--our demonstrated average FWHM spot diameter was 0.74 microm. We demonstrate the prototype by imaging a U.S. Air Force target and a lily anther. This technology is scalable and represents a cost-effective way to implement wide FOV microscopy systems.


Assuntos
Holografia/métodos , Iluminação/métodos , Microscopia/métodos , Holografia/instrumentação , Iluminação/instrumentação , Microscopia/instrumentação
15.
Opt Express ; 18(14): 14366-74, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20639921

RESUMO

We describe a simple way to generate a wide-area high-resolution focus grid by in-line holography and study the factors that impacts its quality. In our holographic recording setup, the reference beam was the direct transmission of the incoming collimated laser beam through a mask coating with thin metal film, and the sample beam was the transmission of the laser through small apertures fabricated on the mask. The interference of the two beams was then recorded by a holographic plate positioned behind the mask. Compared with other recording schemes, the in-line holography scheme has many distinct advantages and is more suitable for generating a wide-area focus grid. We explored the dependence of diffraction quality, including reconstructed focus spot intensity and spot size, on different parameters for recording, such as optical density of the metal film, size of the apertures, and focal lengths. A wide-area focus grid (170 x 138 spots with area 5.1 mm x 4.1 mm) was recorded using the in-line holography scheme for a demonstration.

16.
Biomed Microdevices ; 11(5): 951-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19365730

RESUMO

The optofluidic microscope (OFM) is a lensless, low-cost and highly compact on-chip device that can enable high-resolution microscopy imaging. The OFM performs imaging by flowing/scanning the target objects across a slanted hole array; by measuring the time-varying light transmission changes through the holes, we can then render images of the target objects at a resolution that is comparable to the holes' size. This paper reports the adaptation of the OFM for imaging Giardia lamblia trophozoites and cysts, a disease-causing parasite species that is commonly found in poor-quality water sources. We also describe our study of the impact of pressure-based flow and DC electrokinetic-based flow in controlling the flow motion of Giardia cysts--rotation-free translation of the parasite is important for good OFM image acquisition. Finally, we report the successful microscopy imaging of both Giardia trophozoites and cysts with an OFM that has a focal plane resolution of 0.8 microns.


Assuntos
Giardia lamblia/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia/instrumentação , Imagem Molecular/instrumentação , Dispositivos Ópticos , Trofozoítos/citologia , Desenho de Equipamento , Pressão
17.
Opt Express ; 16(20): 15595-602, 2008 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-18825198

RESUMO

Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM's aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter = 255 microm, focal length = 800 microm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter = 1 microm, separation = 10 microm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength = 633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system--a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples.


Assuntos
Lasers , Microfluídica , Microscopia/métodos , Óptica e Fotônica , Animais , Desenho de Equipamento , Euglena , Hélio/química , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Neônio/química
18.
Proc Natl Acad Sci U S A ; 105(31): 10670-5, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18663227

RESUMO

Low-cost and high-resolution on-chip microscopes are vital for reducing cost and improving efficiency for modern biomedicine and bioscience. Despite the needs, the conventional microscope design has proven difficult to miniaturize. Here, we report the implementation and application of two high-resolution (approximately 0.9 microm for the first and approximately 0.8 microm for the second), lensless, and fully on-chip microscopes based on the optofluidic microscopy (OFM) method. These systems abandon the conventional microscope design, which requires expensive lenses and large space to magnify images, and instead utilizes microfluidic flow to deliver specimens across array(s) of micrometer-size apertures defined on a metal-coated CMOS sensor to generate direct projection images. The first system utilizes a gravity-driven microfluidic flow for sample scanning and is suited for imaging elongate objects, such as Caenorhabditis elegans; and the second system employs an electrokinetic drive for flow control and is suited for imaging cells and other spherical/ellipsoidal objects. As a demonstration of the OFM for bioscience research, we show that the prototypes can be used to perform automated phenotype characterization of different Caenorhabditis elegans mutant strains, and to image spores and single cellular entities. The optofluidic microscope design, readily fabricable with existing semiconductor and microfluidic technologies, offers low-cost and highly compact imaging solutions. More functionalities, such as on-chip phase and fluorescence imaging, can also be readily adapted into OFM systems. We anticipate that the OFM can significantly address a range of biomedical and bioscience needs, and engender new microscope applications.


Assuntos
Caenorhabditis elegans/ultraestrutura , Células/ultraestrutura , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microscopia/métodos , Fenótipo , Animais
19.
Lab Chip ; 6(8): 1080-5, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16874382

RESUMO

A novel photolithography method to build aligned patterns of two different proteins is presented. Chessboard patterns of 125 microm x 125 microm squares are constructed on a silicon dioxide substrate, using standard photoresist chemistries in combination with low-temperature oxygen plasma etching. Low-melting-point agarose (LMPA) is used to protect underlying protein layers and, at the appropriate stage, the digestive enzyme GELase (EPICENTRE) is used to selectively remove the prophylactic LMPA layers. Two antibodies, mouse-IgG and human-IgG, were immobilized and patterned by this procedure. The patterned antibodies maintained the specificity of their antigen-antibody binding, as demonstrated by fluorescence microscopy. In addition, normalized fluorescence intensity profiles illustrate that the patterned proteins layers are uniform (standard deviations below 0.05). Finally, a trypsin activity test was conducted to probe the effect of the patterning protocol on immobilized enzymes; the results imply that this photolithographic process using LMPA as a protection layer preserves 70% of immobilized enzyme activity.


Assuntos
Glicosídeo Hidrolases/química , Imunoglobulina G/química , Técnicas Analíticas Microfluídicas , Sefarose/química , Animais , Antígenos/química , Imunofluorescência , Humanos , Camundongos , Microscopia de Fluorescência
20.
Nanotechnology ; 17(4): S29-33, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727351

RESUMO

A novel self-aligned method to selectively immobilize proteins on a silicon dioxide surface is developed in conjunction with a standard lift-off patterning technique of a PEG layer. The approach is designed to photolithographically pattern regions that specifically bind target proteins and particles, surrounded by regions that suppress non-specific attachment of bio-species. The physical and biological properties of the derivatized surfaces at the end of the fabrication process are characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA