Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 10, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196029

RESUMO

Enhancement of nanoscale confinement in the subwavelength waveguide is a concern for advancing future photonic interconnects. Rigorous innovation of plasmonic waveguide-based structure is crucial in designing a reliable on-chip optical waveguide beyond the diffraction limit. Despite several structural modifications and architectural improvements, the plasmonic waveguide technology is far from reaching its maximum potential for mass-scale applications due to persistence issues such as insufficient confined energy and short propagation length. This work proposes a new method to amplify the propagating plasmons through an external on-chip surface acoustic signal. The gold-silicon dioxide (Au-SiO2) interface, over Lithium Niobate (LN) substrate, is used to excite propagating surface plasmons. The voltage-varying surface acoustic wave (SAW) can tune the plasmonic confinement to a desired signal energy level, enhancing and modulating the plasmonic intensity. From our experimental results, we can increase the plasmonic intensity gain of 1.08 dB by providing an external excitation in the form of SAW at a peak-to-peak potential swing of 3 V, utilizing a single chip.

2.
Biomed Opt Express ; 14(1): 182-193, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36698656

RESUMO

Surface plasmon resonance (SPR) has emerged as one of the most efficient and attractive techniques for optical sensors in biological applications. The traditional approach of an EC (electrochemical)-SPR biosensor to generate SPR is by adopting a prism underneath the sensing substrate, and an angular scan is performed to characterize the reflectivity of target analytes. In this paper, we designed and investigated a novel optical biosensor based on a hybrid plasmonic and electrochemical phenomenon. The SPR was generated from a thin layer of gold nanohole array on a glass substrate. Using C-Reactive Protein (CRP) as the target analyte, we tested our device for different concentrations and observed the optical response under various voltage bias conditions. We observed that SPR response is concentration-dependent and can be modulated by varying DC voltages or AC bias frequencies. For CRP concentrations ranging from 1 to 1000 µg/mL, at the applied voltage of -600 mV, we obtained a limit of detection for this device of 16.5 ng/mL at the resonance peak wavelength of 690 nm. The phenomenon is due to spatial re-distribution of electron concentration at the metal-solution interface. The results suggest that CRP concentration can be determined from the SPR peak wavelength shift by scanning the voltages. The proposed new sensor structure is permissible for various future optoelectronic integration for plasmonic and electrochemical sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA