Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 22(8): 2331-2344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38754782

RESUMO

BACKGROUND: Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES: The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS: We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS: Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION: Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.


Assuntos
Antígenos CD , Apirase , Barreira Hematoencefálica , Infarto da Artéria Cerebral Média , AVC Isquêmico , Molécula 1 de Adesão de Célula Vascular , Animais , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antígenos CD/metabolismo , Apirase/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Fibrinolíticos/uso terapêutico , Fibrinolíticos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
2.
Purinergic Signal ; 18(4): 409-419, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947229

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating progressive disease characterised by pulmonary arterial vasoconstriction and vascular remodelling. Endothelial dysfunction has emerged as a contributing factor in the development of PAH. However, despite progress in the understanding of the pathophysiology of this disease, current therapies fail to impact upon long-term outcomes which remain poor in most patients. Recent observations have suggested the disturbances in the balance between ATP and adenosine may be integral to the vascular remodelling seen in PAH. CD39 is an enzyme important in regulating these nucleos(t)ides which may also provide a novel pathway to target for future therapies. This review summarises the role of adenosine signalling in the development and progression of PAH and highlights the therapeutic potential of CD39 for treatment of PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Remodelação Vascular , Adenosina/uso terapêutico , Imunossupressores
3.
Biomolecules ; 11(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356618

RESUMO

The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood-brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças de Pequenos Vasos Cerebrais/metabolismo , Endotélio Vascular/metabolismo , AVC Isquêmico/metabolismo , Transdução de Sinais , Trombose/metabolismo , Animais , Doenças de Pequenos Vasos Cerebrais/patologia , Endotélio Vascular/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , AVC Isquêmico/patologia , Trombose/patologia
4.
Front Immunol ; 12: 708554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421913

RESUMO

Allogenic hematopoietic stem cell transplant (allo-HSCT) can lead to sinusoidal obstruction syndrome (SOS) and graft-versus-host disease (GvHD) in some individuals. GvHD is characterised by an immune triggered response that arises due to donor T cells recognizing the recipient tissue as "foreign". SOS results in impaired liver function due to microvascular thrombosis and consequent obstruction of liver sinusoids. Endothelial damage occurs following chemotherapy and allo-HSCT and is strongly associated with GvHD onset as well as hepatic SOS. Animal models of GvHD are rarely clinically relevant, and endothelial dysfunction remains uncharacterised. Here we established and characterised a clinically relevant model of GvHD wherein Balb/C mice were subjected to myeloablative chemotherapy followed by transplantation of bone marrow (BM) cells± splenic T-cells from C57Bl6 mice, resulting in a mismatch of major histocompatibility complexes (MHC). Onset of disease indicated by weight loss and apoptosis in the liver and intestine was discovered at day 6 post-transplant in mice receiving BM+T-cells, with established GvHD detectable by histology of the liver within 3 weeks. Together with significant increases in pro-inflammatory cytokine gene expression in the liver and intestine, histopathological signs of GvHD and a significant increase in CD4+ and CD8+ effector and memory T-cells were seen. Endothelial activation including upregulation of vascular cell adhesion molecule (VCAM)- 1 and downregulation of endothelial nitric oxide synthase (eNOS) as well as thrombosis in the liver indicated concomitant hepatic SOS. Our findings confirm that endothelial activation is an early sign of acute GvHD and SOS in a clinically relevant mouse model of GvHD based on myeloablative chemotherapy. Preventing endothelial activation may be a viable therapeutic strategy to prevent GvHD.


Assuntos
Células Endoteliais/metabolismo , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T/transplante , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Agonistas Mieloablativos/toxicidade , Condicionamento Pré-Transplante/efeitos adversos , Condicionamento Pré-Transplante/métodos
5.
Sci Rep ; 10(1): 18170, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097782

RESUMO

Stroke is caused by obstructed blood flow (ischaemia) or unrestricted bleeding in the brain (haemorrhage). Global brain ischaemia occurs after restricted cerebral blood flow e.g. during cardiac arrest. Following ischaemic injury, restoration of blood flow causes ischaemia-reperfusion (I/R) injury which worsens outcome. Secondary injury mechanisms after any stroke are similar, and encompass inflammation, endothelial dysfunction, blood-brain barrier (BBB) damage and apoptosis. We developed a new model of transient global forebrain I/R injury (dual carotid artery ligation; DCAL) and compared the manifestations of this injury with those in a conventional I/R injury model (middle-cerebral artery occlusion; MCAo) and with intracerebral haemorrhage (ICH; collagenase model). MRI revealed that DCAL produced smaller bilateral lesions predominantly localised to the striatum, whereas MCAo produced larger focal corticostriatal lesions. After global forebrain ischaemia mice had worse overall neurological scores, although quantitative locomotor assessment showed MCAo and ICH had significantly worsened mobility. BBB breakdown was highest in the DCAL model while apoptotic activity was highest after ICH. VCAM-1 upregulation was specific to ischaemic models only. Differential transcriptional upregulation of pro-inflammatory chemokines and cytokines and TLRs was seen in the three models. Our findings offer a unique insight into the similarities and differences in how biological processes are regulated after different types of stroke. They also establish a platform for analysis of therapies such as endothelial protective and anti-inflammatory agents that can be applied to all types of stroke.


Assuntos
Circulação Cerebrovascular/fisiologia , Acidente Vascular Cerebral Hemorrágico/patologia , AVC Isquêmico/patologia , Prosencéfalo/irrigação sanguínea , Traumatismo por Reperfusão/patologia , Animais , Anti-Inflamatórios/uso terapêutico , Apoptose/imunologia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Artérias Carótidas/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Colagenases/administração & dosagem , Colagenases/efeitos adversos , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Acidente Vascular Cerebral Hemorrágico/imunologia , Acidente Vascular Cerebral Hemorrágico/fisiopatologia , Humanos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/imunologia , AVC Isquêmico/fisiopatologia , Ligadura , Locomoção/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Artéria Cerebral Média/fisiopatologia , Prosencéfalo/diagnóstico por imagem , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/patologia , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/fisiopatologia , Receptores Toll-Like/genética , Ativação Transcricional/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA