Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736716

RESUMO

We present an azimuthal-rotation-controlled dynamic nanoinscribing (ARC-DNI) process for continuous and scalable fabrication of asymmetric nanograting structures with tunable periods and shape profiles. A sliced edge of a nanograting mold, which typically has a rectangular grating profile, slides over a polymeric substrate to induce its burr-free plastic deformation into a linear nanopattern. During this continuous nanoinscribing process, the "azimuthal angle," that is, the angle between the moving direction of the polymeric substrate and the mold's grating line orientation, can be controlled to tailor the period, geometrical shape, and profile of the inscribed nanopatterns. By modulating the azimuthal angle, along with other important ARC-DNI parameters such as temperature, force, and inscribing speed, we demonstrate that the mold-opening profile and temperature- and time-dependent viscoelastic polymer reflow can be controlled to fabricate asymmetric, blazed, and slanted nanogratings that have diverse geometrical profiles such as trapezoidal, triangular, and parallelogrammatic. Finally, period- and profile-tunable ARC-DNI can be utilized for the practical fabrication of diverse optical devices, as is exemplified by asymmetric diffractive optical elements in this study.

2.
Adv Mater ; : e2312747, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531112

RESUMO

Herein, a high-quality gate stack (native HfO2 formed on 2D HfSe2) fabricated via plasma oxidation is reported, realizing an atomically sharp interface with a suppressed interface trap density (Dit ≈ 5 × 1010 cm-2 eV-1). The chemically converted HfO2 exhibits dielectric constant, κ ≈ 23, resulting in low gate leakage current (≈10-3 A cm-2) at equivalent oxide thickness ≈0.5 nm. Density functional calculations indicate that the atomistic mechanism for achieving a high-quality interface is the possibility of O atoms replacing the Se atoms of the interfacial HfSe2 layer without a substitution energy barrier, allowing layer-by-layer oxidation to proceed. The field-effect-transistor-fabricated HfO2/HfSe2 gate stack demonstrates an almost ideal subthreshold slope (SS) of ≈61 mV dec-1 (over four orders of IDS) at room temperature (300 K), along with a high Ion/Ioff ratio of ≈108 and a small hysteresis of ≈10 mV. Furthermore, by utilizing a device architecture with separately controlled HfO2/HfSe2 gate stack and channel structures, an impact ionization field-effect transistor is fabricated that exhibits n-type steep-switching characteristics with a SS value of 3.43 mV dec-1 at room temperature, overcoming the Boltzmann limit. These results provide a significant step toward the realization of post-Si semiconducting devices for future energy-efficient data-centric computing electronics.

3.
ACS Nano ; 15(2): 3070-3078, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33471503

RESUMO

We present a mold-free high-resolution nanopatterning technology named piezo-actuated one-axis vibrational patterning (POP) that enables continuous and scalable fabrication of micro- and nanopatterns with precisely programmable periods and dimensions. POP utilizes the piezoelectric stack-actuated high-precision uniaxial vibration of a flat, pattern-free rigid tool edge to conduct sub-50 nm-periodic indentations on various compliant substrates laterally fed underneath. By controlling the tool vibration frequency, tool temperature, and substrate feed rate and by combining sequential tool strokes along multiple directions, diverse functional micro- and nanopatterns with variable periods and depths and multidimensional profiles can be continuously created without resorting to mold prefabrication. With its simple but universal principle, excellent scalability, and versatile processability, POP can be practically applied to many functional devices particularly requiring large-area micro- and nanopatterns with specifically designed periods and dimensions.

4.
ACS Nano ; 13(10): 11194-11202, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31593432

RESUMO

We present that the tailored nanopatterning with tunable shape, depth, and dimension for diverse application-specific designs can be realized by utilizing controlled dynamic nanoinscribing (DNI), which can generate bur-free plastic deformation on various flexible substrates via continuous mechanical inscription of a small sliced edge of a nanopatterned mold in a compact and vacuum-free system. Systematic controlling of prime DNI processing parameters including inscribing force, temperature, and substrate feed rate can determine the nanopattern depths and their specific profiles from rounded to angular shapes as a summation of the force-driven plastic deformation and heat-driven thermal deformation. More complex nanopatterns with gradient depths and/or multidimensional profiles can also be readily created by modulating the horizontal mold edge alignment and/or combining sequential DNI strokes, which otherwise demand laborious and costly procedures. Many practical user-specific applications may benefit from this study by tailor-making the desired nanopattern structures within desired areas, including precision machine and optics components, transparent electronics and photonics, flexible sensors, and reattachable and wearable devices. We demonstrate one vivid example in which the light diffusion direction of a light-emitting diode can be tuned by application of specifically designed DNI nanopatterns.

5.
Fusio ; 1(2): 65-94, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30140790

RESUMO

Women who use drugs are stigmatized for their drug use behavior, which marginalizes them from mainstream society. Stigmatization can be viewed as an attempt by social services to exert control. Research shows that these strategies do not work well for discouraging drug use; whereas attempts to reduce the stigma related to drug use can encourage users to stop use. Using qualitative methods and grounded theory analysis, the goal of this study is to examine (1) the stigmatization of drug use through different stages; (2) how stigmatized women drug users perceive normality; and (3) barriers and challenges to recovery. Based on in-depth interviews from 20 women who used methamphetamine, the analysis focuses on stigmatization before the initiation of drug use, difficulties related to stigma as drug users, and challenges due to stigmatization as they recover from drug use. Findings show that women are stigmatized before they use drugs, face more stigma as they use, and even during recovery society still holds onto the label of former drug user, making it difficult to avoid stigma. The findings contribute to a better understanding of how stigmatization of women drug users impacts their recovery and provides suggestions for social service and treatment providers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA