RESUMO
The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.
Assuntos
Fator de Iniciação 4F em Eucariotos , GTP Fosfo-Hidrolases , Sistema de Sinalização das MAP Quinases , Melanoma , Proteínas de Membrana , Mutação , Proteínas Proto-Oncogênicas B-raf , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismoRESUMO
High-throughput computational materials discovery has promised significant acceleration of the design and discovery of new materials for many years. Despite a surge in interest and activity, the constraints imposed by large-scale computational resources present a significant bottleneck. Furthermore, examples of very large-scale computational discovery carried out through experimental validation remain scarce, especially for materials with product applicability. Here, we demonstrate how this vision became reality by combining state-of-the-art machine learning (ML) models and traditional physics-based models on cloud high-performance computing (HPC) resources to quickly navigate through more than 32 million candidates and predict around half a million potentially stable materials. By focusing on solid-state electrolytes for battery applications, our discovery pipeline further identified 18 promising candidates with new compositions and rediscovered a decade's worth of collective knowledge in the field as a byproduct. We then synthesized and experimentally characterized the structures and conductivities of our top candidates, the NaxLi3-xYCl6 (0≤ x≤ 3) series, demonstrating the potential of these compounds to serve as solid electrolytes. Additional candidate materials that are currently under experimental investigation could offer more examples of the computational discovery of new phases of Li- and Na-conducting solid electrolytes. The showcased screening of millions of materials candidates highlights the transformative potential of advanced ML and HPC methodologies, propelling materials discovery into a new era of efficiency and innovation.
RESUMO
Cerebrovascular disease (CVD) and Alzheimer's disease (AD) often co-occur and may impact specific cognitive domains. This study's goal was to determine effects of CVD and AD burden on cross-sectional and longitudinal executive function (EF) and memory in older adults. Longitudinally followed participants from the National Alzheimer Coordinating Center database (n = 3342) were included. Cognitive outcomes were EF and memory composite scores. Baseline CVD presence was defined by moderate-to-severe white matter hyperintensities or lacunar infarct on MRI. Baseline AD pathology was defined by amyloid positivity via PET or CSF. Linear mixed models examined effects of CVD, AD, and time on cognitive outcomes, controlling for sex, education, baseline age, MoCA score, and total number of study visits. At baseline, CVD associated with lower EF (p < 0.001), while AD associated with lower EF and memory (ps < 0.001). Longitudinally only AD associated with faster declines in memory and EF (ps < 0.001). These results extend our understanding of CVD and AD pathology, highlighting that CVD does not necessarily indicate accelerated decline.
Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/psicologia , Feminino , Masculino , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/epidemiologia , Idoso , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Idoso de 80 Anos ou mais , Estudos Longitudinais , Função Executiva , Memória , Estudos Transversais , Cognição , Imageamento por Ressonância MagnéticaRESUMO
INTRODUCTION: Existing research highlights the significance of prosocial behavior (voluntary, intentional behavior that results in benefits for another) to people's well-being. Yet, the extent to which this expected positive relation operates at the within-person level (e.g., is more prosocial behavior than usual related to a higher than usual level of well-being?) while taking into account stable interindividual differences, remains a research question that deserves further investigation. In this study, we aimed to explore the relations between prosocial behavior and hedonic (HWB; subjective assessment of life satisfaction and happiness) and eudaimonic (EWB; actualization of human potential in alignment with personal goals, including concepts like meaning in life and closeness to others) well-being in daily life. METHOD: Using ecological momentary assessment for 4 weeks, data were collected from two British samples, comprising 82 adolescents and 166 adults. RESULTS: Dynamic Structural Equation Modeling revealed a positive relations between prosocial behavior and HWB/EWB at both between and within-person levels across the samples. CONCLUSION: In summary, these findings further support the positive link between prosocial behavior and well-being in everyday life. Notably, this association was consistent across different age groups (adolescent and adults) at both between and within-person levels.
RESUMO
INTRODUCTION: We comprehensively evaluated how self- and informant-reported neuropsychiatric symptoms (NPS) were differentially associated with cerebral amyloid-beta (Aß) PET levels in older adults without dementia. METHODS: Two hundred and twenty-one participants (48% female, age = 73.4 years ± 8.4, Clinical Dementia Rating = 0 [n = 184] or 0.5 [n = 37]) underwent an Aß-PET scan (florbetapir or PIB), comprehensive neuropsychological testing, and self-reported (Geriatric Depression Scale - 30 item [GDS-30]) and informant-reported interview (Neuropsychiatric Inventory Questionnaire [NPI-Q]) of NPS. Cerebral Aß burden was quantified using centiloids (CL). NPI-Q and GDS-30 queried the presence of NPS within 4 subdomains and 6 subscales, respectively. Regression models examined the relationship between NPS and Aß-PET CL. RESULTS: Both higher self- and informant-reported NPS were associated with higher Aß burden. Among specific NPI-Q subdomains, informant-reported changes in depression, anxiety, and irritability were all associated with higher Aß-PET. Similarly, self-reported (GDS-30) subscales of depression, apathy, anxiety, and cognitive concern were associated with higher Aß-PET. When simultaneously entered, only self-reported cognitive concern was associated with Aß-PET in the GDS-30 model, while both informant-reported anxiety and depression were associated with Aß-PET in the NPI-Q model. Clinical status moderated the association between self-reported NPS and Aß-PET such that the positive relationship between self-perceived NPS and Aß burden strengthened with increasing functional difficulties. CONCLUSIONS: In a cohort of older adults without dementia, both self- and informant-reported measures of global NPS, particularly patient-reported cognitive concerns and informant-reported anxiety and depression, corresponded with cerebral Aß burden. NPS may appear early in the prodromal disease state and relate to initial AD proteinopathy burden, a relationship further exaggerated in those with greater clinical severity.
Assuntos
Peptídeos beta-Amiloides , Depressão , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Depressão/psicologia , Ansiedade/psicologia , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Autorrelato , Escalas de Graduação Psiquiátrica , Demência/psicologiaRESUMO
BACKGROUND AND OBJECTIVES: Cavum septum pellucidum (CSP) is a common but nonspecific MRI finding in individuals with prior head trauma. The type and extent of head trauma related to CSP, CSP features specific to head trauma, and the impact of brain atrophy on CSP are unknown. We evaluated CSP cross-sectionally and longitudinally in healthy and clinically impaired older adults who underwent detailed lifetime head trauma characterization. METHODS: This is an observational cohort study of University of California, San Francisco Memory and Aging Center participants (healthy controls [HCs], those with Alzheimer disease or related dementias [ADRDs], subset with traumatic encephalopathy syndrome [TES]). We characterized traumatic brain injury (TBI) and repetitive head impacts (RHI) through contact/collision sports. Study groups were no RHI/TBI, prior TBI only, prior RHI only, and prior RHI + TBI. We additionally looked within TBI (1, 2, or 3+) and RHI (1-4, 5-10, and 11+ years). All underwent baseline MRI, and 67% completed a second MRI (median follow-up = 5.4 years). CSP measures included grade (0-4) and length (millimeters). Groups were compared on likelihood of CSP (logistic regression, odds ratios [ORs]) and whether CSP length discriminated groups (area under the curve [AUC]). RESULTS: Our sample included 266 participants (N = 160 HCs, N = 106 with ADRD or TES; age 66.8 ± 8.2 years, 45.3% female). Overall, 123 (49.8%) participants had no RHI/TBI, 52 (21.1%) had TBI only, 41 (16.6%) had RHI only, 31 (12.6%) had RHI + TBI, and 20 were classified as those with TES (7.5%). Compared with no RHI/TBI, RHI + TBI (OR 3.11 [1.23-7.88]) and TES (OR 11.6 [2.46-54.8]) had greater odds of CSP. Approximately 5-10 years (OR 2.96 [1.13-7.77]) and 11+ years of RHI (OR 3.14 [1.06-9.31]) had higher odds of CSP. CSP length modestly discriminated participants with 5-10 years (AUC 0.63 [0.51-0.75]) and 11+ years of prior RHI (AUC 0.69 [0.55-0.84]) from no RHI/TBI (cut point = 6 mm). Strongest effects were noted in analyses of American football participation. Longitudinally, CSP grade was unchanged in 165 (91.7%), and length was unchanged in 171 (95.5%) participants. DISCUSSION: Among older adults with and without neurodegenerative disease, risk of CSP is driven more by duration (years) of RHI, especially American football, than number of TBI. CSP length (≥6 mm) is relatively specific to individuals who have had substantial prior RHI. Neurodegenerative disease and progressive atrophy do not clearly influence development or worsening of CSP.
Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Futebol Americano , Doenças Neurodegenerativas , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Septo Pelúcido/diagnóstico por imagem , Septo Pelúcido/patologia , Doenças Neurodegenerativas/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Atrofia/patologiaRESUMO
BACKGROUND: Modifiable lifestyle behaviors account for a large proportion of dementia risk. However, the combined contributions of multidomain lifestyle patterns to cognitive aging are poorly understood, as most studies have examined individual lifestyle behaviors in isolation and without neuropathological characterization. This study examined data-driven patterns of lifestyle behaviors across multiple domains among older adults and tested their associations with disease-specific neuropathological burden and cognitive decline. METHODS: Participants included 2059 older adults enrolled in the longitudinal Memory and Aging Project (MAP) at the Rush Alzheimer's Disease Center; none of whom had dementia at baseline (73% no cognitive impairment (NCI), 27% mild cognitive impairment [MCI]). All participants completed cognitive testing annually. Lifestyle factors were measured during at least one visit and included (1) actigraphy-measured physical activity, as well as self-reported (2) sleep quality, (3) life space, (4) cognitive activities, (5) social activities, and (6) social network. A subset of participants (n = 791) had autopsy data for which burden of Alzheimer's disease (AD), cerebrovascular disease (CVD), Lewy body disease, and hippocampal sclerosis/TDP-43 was measured. Latent profile analysis across all 2059 participants identified distinct subgroups (i.e., classes) of lifestyle patterns. Linear mixed-effects models examined relationships between lifestyle classes and global cognitive trajectories, with and without covarying for all neuropathologies. Classes were also compared on rates of incident MCI/dementia. RESULTS: Five classes were identified: Class 1Low Life Space (lowest lifestyle engagement), Class 2PA (high physical activity), Class 3Low Avg (low to average lifestyle engagement), Class 4Balanced (high average lifestyle engagement), and Class 5Social (large social network). Classes 4Balanced and 5Social had the lowest AD burden, and Class 2PA had the lowest CVD burden. Classes 2-5 had significantly less steep global cognitive decline compared to Class 1Low Life Space, with comparable effect sizes before and after covarying for neuropathological burden. Classes 4Balanced and 5Social exhibited the lowest rates of incident MCI/dementia. CONCLUSIONS: Lifestyle behavior patterns among older adults account for differential rates of cognitive decline and clinical progression. Those with at least average engagement across all lifestyle domains exhibit greater cognitive stability after adjustment for neuropathology, highlighting the importance of engagement in multiple healthy lifestyle behaviors for later life cognitive health.
Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/patologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/patologia , Estilo de Vida , CogniçãoRESUMO
Physical activity (PA) is linked to better cognitive and brain health, though its mechanisms are unknown. While brain iron is essential for normal function, levels increase with age and, when excessive, can cause detrimental neural effects. We examined how objectively measured PA relates to cerebral iron deposition and memory functioning in normal older adults. Sixty-eight cognitively unimpaired older adults from the UCSF Memory and Aging Center completed neuropsychological testing and brain magnetic resonance imaging, followed by 30-day Fitbit monitoring. Magnetic resonance imaging quantitative susceptibility mapping (QSM) quantified iron deposition. PA was operationalized as average daily steps. Linear regression models examined memory as a function of hippocampal QSM, PA, and their interaction. Higher bilateral hippocampal iron deposition correlated with worse memory but was not strongly related to PA. Covarying for demographics, PA moderated the relationship between bilateral hippocampal iron deposition and memory such that the negative effect of hippocampal QSM on memory performances was no longer significant above 9120 daily steps. PA may mitigate adverse iron-related pathways for memory health.
Assuntos
Encéfalo , Exercício Físico , Encéfalo/metabolismo , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Ferro/metabolismoRESUMO
Health benefits of physical activity (PA) are well known; however, specific PA patterns that relate most strongly to cognitive aging outcomes are poorly understood. We characterized latent profiles of PA among older adults and examined associations with cognition and vascular burden. 124 functionally normal older adults wore a Fitbit™ for 30 days. Daily average step count, sedentary time (0 steps/min), and high-intensity time (≥120 steps/min) were calculated. Participants completed neurocognitive testing assessing cognitive domains of executive functioning and memory; medical history, from which vascular burden (i.e., a count of cardiovascular conditions) was calculated; and brain MRI (n = 44). Subgroups with similar PA patterns were identified via latent profile analysis. Three latent PA classes emerged: Class 1Low PA (n = 49), Class 2Average PA (n = 59), and Class 3High-intensity PA (n = 16). PA class related to executive functioning and vascular burden, driven by better outcomes in Class 3 than Class 1. Sex-stratified analyses revealed these associations were strongest in males. Post hoc analyses showed a positive association between high-intensity PA and white matter integrity among males. High-intensity PA related to better cognitive and vascular health, particularly among males. Findings inform physical activity-specific and person-specific recommendations for optimal cognitive aging.
Assuntos
Actigrafia , Substância Branca , Masculino , Humanos , Idoso , Cognição , Exercício Físico/psicologia , Função ExecutivaRESUMO
Many factors outside of cardiovascular health can impact the structure of white matter. Identification of reliable and clinically meaningful biomarkers of the neural effects of systemic and cardiovascular health are needed to refine etiologic predictions. We examined whether the corpus callosum demonstrates regional vulnerability to systemic cardiovascular risk factors. Three hundred and ninety-four older adults without dementia completed brain MRI, neurobehavioral evaluations, and blood draws. A subset (n = 126, n = 128) of individuals had blood plasma analyzed for inflammatory markers of interest (IL-6 and TNF-alpha). Considering diffusion tensor imaging (DTI) is a particularly reliable measure of white matter integrity, we utilized DTI to examine fractional anisotropy (FA) of anterior and posterior regions of the corpus callosum. Using multiple linear regression models, we simultaneously examined FA of the genu and the splenium to compare their associations with systemic and cardiovascular risk factors. Lower FA of the genu but not splenium was associated with greater systemic and cardiovascular risk, including higher systolic blood pressure (ß = -0.17, p = .020), hemoglobin A1C (ß = -0.21, p = .016) and IL-6 (ß = -0.34, p = .005). FA of the genu was uniquely associated with cognitive processing speed (ß = 0.20, p = .0015) and executive functioning (ß = 0.15, p = .012), but not memory performances (ß = 0.05, p = .357). Our results demonstrated differential vulnerability of the corpus callosum, such that frontal regions showed stronger, independent associations with biomarkers of systemic and cardiovascular health in comparison to posterior regions. Posterior white matter integrity may not reflect cardiovascular health. Clinically, these findings support the utility of examining the anterior corpus callosum as an indicator of cerebrovascular health.
Assuntos
Doenças Cardiovasculares , Corpo Caloso , Humanos , Idoso , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Interleucina-6 , Fatores de Risco , Fatores de Risco de Doenças Cardíacas , EncéfaloRESUMO
Importance: Physical activity is associated with cognitive health, even in autosomal dominant forms of dementia. Higher physical activity is associated with slowed cognitive and functional declines over time in adults carrying autosomal dominant variants for frontotemporal lobar degeneration (FTLD), but whether axonal degeneration is a potential neuroprotective target of physical activity in individuals with FTLD is unknown. Objective: To examine the association between physical activity and longitudinal neurofilament light chain (NfL) trajectories in individuals with autosomal dominant forms of FTLD. Design, Setting, and Participants: This cohort study included individuals from the ALLFTD Consortium, which recruited patients from sites in the US and Canada. Symptomatic and asymptomatic adults with pathogenic variants in one of 3 common genes associated with FTLD (GRN, C9orf72, or MAPT) who reported baseline physical activity levels and completed annual blood draws were assessed annually for up to 4 years. Genotype, clinical measures, and blood draws were collected between December 2014 and June 2019; data were analyzed from August 2021 to January 2022. Associations between reported baseline physical activity and longitudinal plasma NfL changes were assessed using generalized linear mixed-effects models adjusting for baseline age, sex, education, functional severity, and motor symptoms. Exposures: Baseline physical activity levels reported via the Physical Activity Scale for the Elderly. To estimate effect sizes, marginal means were calculated at 3 levels of physical activity: 1 SD above the mean represented high physical activity, 0 SD represented average physical activity, and 1 SD below the mean represented low physical activity. Main Outcomes and Measures: Annual plasma NfL concentrations were measured with single-molecule array technology. Results: Of 160 included FTLD variant carriers, 84 (52.5%) were female, and the mean (SD) age was 50.7 (14.7) years. A total of 51 (31.8%) were symptomatic, and 77 carried the C9orf72 variant; 39, GRN variant; and 44, MAPT variant. Higher baseline physical activity was associated with slower NfL trajectories over time. On average, NfL increased 45.8% (95% CI, 22.5 to 73.7) over 4 years in variant carriers. Variant carriers with high physical activity demonstrated 14.0% (95% CI, -22.7 to -4.3) slower NfL increases compared with those with average physical activity and 30% (95% CI, -52.2 to -8.8) slower NfL increases compared with those with low physical activity. Within genotype, C9orf72 and MAPT carriers with high physical activity evidenced 18% to 21% (95% CI, -43.4 to -7.2) attenuation in NfL, while the association between physical activity and NfL trajectory was not statistically significant in GRN carriers. Activities associated with higher cardiorespiratory and cognitive demands (sports, housework, and yardwork) were most strongly correlated with slower NfL trajectories (vs walking and strength training). Conclusions and Relevance: In this study, higher reported physical activity was associated with slower progression of an axonal degeneration marker in individuals with autosomal dominant FTLD. Physical activity may serve as a primary prevention target in FTLD.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia , Proteína C9orf72/genética , Estudos de Coortes , Exercício Físico , Degeneração Lobar Frontotemporal/genética , Filamentos IntermediáriosRESUMO
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a global public health threat. In this study, we employed whole-genome sequencing (WGS) to determine the genomic epidemiology of a longitudinal collection of clinical CRKP isolates recovered from a large public acute care hospital in Singapore. Phylogenetic analyses, a characterization of resistance and virulence determinants, and plasmid profiling were performed for 575 unique CRKP isolates collected between 2009 and 2020. The phylogenetic analyses identified the presence of global high-risk clones among the CRKP population (clonal group [CG] 14/15, CG17/20, CG147, CG258, and sequence type [ST] 231), and these clones constituted 50% of the isolates. Carbapenemase production was common (n = 497, 86.4%), and KPC was the predominant carbapenemase (n = 235, 40.9%), followed by OXA-48-like (n = 128, 22.3%) and NDM (n = 93, 16.2%). Hypervirulence was detected in 59 (10.3%) isolates and was most common in the ST231 carbapenemase-producing isolates (21/59, 35.6%). Carbapenemase genes were associated with diverse plasmid replicons; however, there was an association of blaOXA-181/232 with ColKP3 plasmids. This study presents the complex and diverse epidemiology of the CRKP strains circulating in Singapore. Our study highlights the utility of WGS-based genomic surveillance in tracking the population dynamics of CRKP. IMPORTANCE In this study, we characterized carbapenem-resistant Klebsiella pneumoniae clinical isolates collected over a 12-year period in the largest public acute-care hospital in Singapore using whole-genome sequencing. The results of this study demonstrate significant genomic diversity with the presence of well-known epidemic, multidrug-resistant clones amid a diverse pool of nonepidemic lineages. Genomic surveillance involving comprehensive resistance, virulence, and plasmid gene content profiling provided critical information for antimicrobial resistance monitoring and highlighted future surveillance priorities, such as the emergence of ST231 K. pneumoniae strains bearing multidrug resistance, virulence elements, and the potential plasmid-mediated transmission of the blaOXA-48-like gene. The findings here also reinforce the necessity of unique infection control and prevention strategies that take the genomic diversity of local circulating strains into consideration.
Assuntos
Anti-Infecciosos , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Filogenia , Saúde Pública , Singapura/epidemiologia , Tipagem de Sequências Multilocus , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , beta-Lactamases/genética , Plasmídeos/genética , Genômica , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Hospitais , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND AND OBJECTIVES: Synaptic dysfunction and degeneration is a predominant feature of brain aging and synaptic preservation buffers against Alzheimer's disease (AD) protein-related brain atrophy. We tested whether cerebrospinal fluid (CSF) synaptic protein concentrations similarly moderate the effects of axonal injury, indexed via CSF neurofilament light [NfL], on brain atrophy in clinically normal adults. METHODS: Clinically normal older adults enrolled in the observational Hillblom Aging Network study at the UCSF Memory and Aging Center completed baseline lumbar puncture and longitudinal brain MRI (Mean scan [follow-up]=2.6 [3.7 years]). CSF was assayed for synaptic proteins (synaptotagmin-1, synaptosomal-associated protein 2 [SNAP-25], neurogranin, growth associated protein 43 [GAP-43]), axonal injury (NfL), and core AD biomarkers (ptau181/Aß42 ratio; reflecting AD proteinopathy). Ten bilateral temporo-parietal gray matter ROIs shown to be sensitive to clinical AD were summed to generate a composite temporo-parietal ROI. Linear mixed-effects models tested statistical moderation of baseline synaptic proteins on baseline NfL-related temporo-parietal trajectories, controlling for ptau181/Aß42 ratios. RESULTS: Forty-six clinically normal older adults (Mean age=70; 43% female) were included. Synaptic proteins exhibited small to medium correlations with NfL (r range: .10 to .36). Higher baseline NfL, but not ptau181/Aß42 ratios, predicted steeper temporo-parietal atrophy (NfL x time: ß=-0.08, p<.001; ptau181/Aß42 x time: ß=-0.02, p=.31). SNAP-25, neurogranin, and GAP-43 significantly moderated NfL-related atrophy trajectories (-0.07≤ßs≥-0.06, ps<.05) such that NfL was associated with temporo-parietal atrophy at high (more abnormal) but not low (more normal) synaptic protein concentrations. At high NfL concentrations, atrophy trajectories were 1.5 to 4.5 times weaker when synaptic protein concentrations were low (ß range: -0.21 to -0.07) than high (ß range: -0.33 to -0.30). CONCLUSIONS: The association between baseline CSF NfL and longitudinal temporo-parietal atrophy is accelerated by synaptic dysfunction and buffered by synaptic integrity. Beyond AD proteins, concurrent examination of in vivo axonal and synaptic biomarkers may improve detection of neural alterations that precede overt structural changes in AD-sensitive brain regions.
RESUMO
Introduction: Wearables have great potential to improve monitoring and delivery of physical activity interventions to older adults with downstream benefits to multisystem health and longevity; however, benefits obtained from wearables depend on their uptake and usage. Few studies have examined person-specific factors that relate to wearable adherence. We characterized adherence to using a wearable activity tracker for 30 days and examined associations between adherence and demographics, cognitive functioning, brain volumes, and technology familiarity among community-dwelling older adults. Methods: Participants were 175 older adults enrolled in the UCSF Longitudinal Brain Aging Study who were asked to wear a FitbitTM Flex 2 during waking hours for 30 days. Sixty two of these participants were also asked to sync their devices to the Fitbit smartphone app daily to collect minute-level data. We calculated adherence to wearing the Fitbit daily (i.e., proportion of days with valid activity data) and adherence to daily device syncing (i.e., proportion of days with minute-level activity data). Participants also completed a brain MRI and in-person cognitive testing measuring memory, executive functioning, and processing speed. Spearman correlations, Wilcoxon rank sum tests, and logistic regression tested relationships between wearable adherence and clinicodemographic factors. Results: Participants wore the Fitbits for an average of 95% of study days and were 85% adherent to the daily syncing protocol. Greater adherence to wearing the device was related to female sex. Greater adherence to daily device syncing was related to better memory, independent of demographic factors. Wearable adherence was not significantly related to age, education, executive functioning, processing speed, brain gray matter volumes, or self-reported familiarity with technology. Participants reported little-to-no difficulty using the wearable and all reported willingness to participate in another wearable study in the future. Conclusions: Older adults have overall high adherence to wearable use in the current study protocol. Person-specific factors, however, may represent potential barriers to equitable uptake of wearables for physical activity among older adults, including demographics and cognitive functioning. Future studies and clinical providers utilizing wearable activity trackers with older adults may benefit from implementation of reminders (e.g., texts, calls) for device use, particularly among men and individuals with memory impairment.
RESUMO
Centrosymmetric skutterudite RhP3 was converted to a nonsymmorphic and chiral compound RhSi0.3 P2.7 (space group P21 21 21 ) by means of partial replacement of Si for P. The structure, determined by a combination of X-ray crystallography and solid state 31 Pâ NMR, exhibits branched polyanionic P/Si chains that are unique among metal phosphides. A driving force to stabilize the locally noncentrosymmetric cis-RhSi2 P4 and fac-RhSi3 P3 fragments is π-electron back-donation between the Rh t2g -type orbitals and the unoccupied antibonding Si/P orbitals, which is more effective for Si than for P. In situ studies and total energy calculations revealed the metastable nature of RhSi0.3 P2.7 . Electronic structure calculations predicted centrosymmetric cubic RhP3 to be metallic which was confirmed by transport properties measurements. In contrast, the electronic structure for chiral orthorhombic RhSi0.3 P2.7 contained a bandgap, and this compound was shown to be a narrow gap semiconductor.
RESUMO
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is becoming increasingly problematic due to the limited effectiveness of new antimicrobials or other factors such as treatment cost. Thus, combination therapy remains a suitable treatment option. We aimed to evaluate the in vitro bactericidal activity of various antibiotic combinations against CRKP with different carbapenemase genotypes and sequence types (STs). Thirty-seven CRKP with various STs and carbapenemases were exposed to 11 antibiotic combinations (polymyxin B or tigecycline in combination with ß-lactams including aztreonam, cefepime, piperacillin/tazobactam, doripenem, meropenem, and polymyxin B with tigecycline) in static time-kill studies (TKS) using clinically achievable concentrations. Out of the 407 isolate-combination pairs, only 146 (35.8%) were bactericidal (≥3 log10CFU/mL decrease from initial inoculum). Polymyxin B in combination with doripenem, meropenem, or cefepime was the most active, each demonstrating bactericidal activity in 27, 24, and 24 out of 37 isolates, respectively. Tigecycline in combination with ß-lactams was rarely bactericidal. Aside from the lower frequency of bactericidal activity in the dual-carbapenemase producers, there was no apparent difference in combination activity among the strains with other carbapenemase types. In addition, bactericidal combinations were varied even in strains with similar STs, carbapenemases, and other genomic characteristics. Our findings demonstrate that the bactericidal activity of antibiotic combinations is highly strain-specific likely owing to the complex interplay of carbapenem-resistance mechanisms, i.e., carbapenemase genotype alone cannot predict in vitro bactericidal activity. The availability of WGS information can help rationalize the activity of certain combinations. Further studies should explore the use of genomic markers with phenotypic information to predict combination activity.
RESUMO
An innovative method of synthesis is reported for the large and diverse (RE)6(TM) x (Tt)2S14 (RE = rare-earth, TM = transition metals, Tt = Si, Ge, and Sn) family of compounds (â¼1000 members, â¼325 contain Si), crystallizing in the noncentrosymmetric, chiral, and polar P63 space group. Traditional synthesis of such phases involves the annealing of elements or binary sulfides at elevated temperatures. The atomic mixing of refractory components technique, presented here, allows the synthesis of known members and vastly expands the family to nearly the entire transition metal block, including 3d, 4d, and 5d TMs with oxidation states ranging from 1+ to 4+. Arc-melting of the RE, TM, and tetrel elements of choice forms an atomically-mixed precursor, which readily reacts with sulfur providing bulk powders and large single crystals of the target quaternary sulfides. Detailed in situ and ex situ experiments show the mechanism of formation, which involves multiphase binary sulfide intermediates. Crystal structures and metal oxidation states were corroborated by a combination of single crystal X-ray diffraction, elemental analysis, EPR, NMR, and SQUID magnetometry. The potential of La6(TM) x (Tt)2S14 compounds for non-linear optical applications was also demonstrated.
RESUMO
Pseudomonas aeruginosa is a clinically important pathogen implicated in many hospital-acquired infections. Its propensity to acquire broad-spectrum resistance has earned the organism its status as a severe public health threat requiring urgent control measures. While whole-genome sequencing-based genomic surveillance provides a means to track antimicrobial resistance, its use in molecular epidemiological surveys of P. aeruginosa remains limited, especially in the Southeast Asian region. We sequenced the whole genomes of 222 carbapenem-non-susceptible P. aeruginosa (CNPA) isolates collected in 2006-2020 at the largest public acute care hospital in Singapore. Antimicrobial susceptibilities were determined using broth microdilution. Clonal relatedness, multi-locus sequence types, and antimicrobial resistance determinants (acquired and chromosomal) were determined. In this study, CNPA exhibited broad-spectrum resistance (87.8% multi-drug resistance), retaining susceptibility only to polymyxin B (95.0%) and amikacin (55.0%). Carbapenemases were detected in 51.4% of the isolates, where IMP and NDM metallo-ß-lactamases were the most frequent. Carbapenem resistance was also likely associated with OprD alterations or efflux mechanisms (ArmZ/NalD mutations), which occurred in strains with or without carbapenemases. The population of CNPA in the hospital was diverse; the 222 isolates grouped into 68 sequence types (ST), which included various high-risk clones. We detected an emerging clone, the NDM-1-producing ST308, in addition to the global high-risk ST235 clone which was the predominant clone in our population. Our results thus provide a "snapshot" of the circulating lineages of CNPA locally and the prevailing genetic mechanisms contributing to carbapenem resistance. This database also serves as the baseline for future prospective surveillance studies.
Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Genoma Bacteriano , Genômica/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Técnicas de Tipagem Bacteriana , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Estudos Prospectivos , Pseudomonas aeruginosa/classificação , Singapura , Sequenciamento Completo do GenomaRESUMO
Three new sodium zinc antimonides Na11Zn2Sb5, Na4Zn9Sb9, and NaZn3Sb3 were synthesized utilizing sodium hydride NaH as a reactive sodium source. In comparison to the synthesis using sodium metal, salt-like NaH can be ball-milled, leading to the easy and uniform mixing of precursors in the desired stoichiometric ratios. Such comprehensive compositional control enables a fast screening of the Na-Zn-Sb system and identification of new compounds, followed by their preparation in bulk with high purity. Na11Zn2Sb5 crystallizes in the triclinic P1 space group (No. 2, Z = 2, a = 8.8739(6) Å, b = 10.6407(7) Å, c = 11.4282(8) Å, α = 103.453(2)°, ß = 96.997(2)°, γ = 107.517(2)°) and features polyanionic [Zn2Sb5]11- clusters with unusual 3-coordinated Zn atoms. Both Na4Zn9Sb9 (Z = 4, a = 28.4794(4) Å, b = 4.47189(5) Å, c = 17.2704(2) Å, ß = 98.3363(6)°) and NaZn3Sb3 (Z = 8, a = 32.1790(1) Å, b = 4.51549(1) Å, c = 9.64569(2) Å, ß = 98.4618(1)°) crystallize in the monoclinic C2/m space group (No. 12) and have complex new structure types. For both compounds, their frameworks are built from ZnSb4 distorted tetrahedra, which are linked via edge-, vertex-sharing, or both, while Na cations fill in the framework channels. Due to the complex structures, Na4Zn9Sb9 and NaZn3Sb3 compounds exhibit low thermal conductivities (0.97-1.26 W·m-1 K-1) at room temperature, positive Seebeck coefficients (19-32 µV/K) suggestive of holes as charge carriers, and semimetallic electrical resistivities (â¼1.0-2.3 × 10-4 Ω·m). Na4Zn9Sb9 and NaZn3Sb3 decompose into the equiatomic NaZnSb above â¼800 K, as determined by in situ synchrotron powder X-ray diffraction. The discovery of multiple ternary compounds highlights the importance of judicious choice of the synthetic method.
RESUMO
Complex polymorphic relationships in the LnSiP3 (Ln = La and Ce) family of compounds are reported. An innovative synthetic method was developed to overcome differences in the reactivities of the rare-earth metal and refractory silicon with phosphorus. Reactions of atomically mixed Ln + Si with P allowed for selective control over the reaction outcomes resulting in targeted isolation of three new polymorphs of LaSiP3 and two polymorphs of CeSiP3. In situ X-ray diffraction studies revealed that the developed method bypasses formation of the thermodynamic dead-end, the binary SiP. Careful re-determination of the crystal structure ruled out the previously reported ordered centrosymmetric structure of CeSiP3 and showed that the main LnSiP3 polymorphs crystallize in the non-centrosymmetric Pna21 and Aea2 space groups featuring distinct distortions of the regular P square net to yield either cis-trans 1D phosphorus chains (Pna21) or disordered-2D phosphorus layers (Aea2). The disordered 2D nature of the P layers in the Aea2 LaSiP3 polymorph was confirmed by Raman spectroscopy. A unique centrosymmetric P21/c polymorph was observed for LaSiP3 and has a completely different crystal structure lacking P layers. Consecutive polymorphic transformations at increasing temperatures for LaSiP3(Pna21 â P21/c â Aea2) were derived from optimized synthetic profiles and confirmed by a combination of phonon computations and experimental in situ and ex situ annealings. Crystal structures of the LaSiP3 polymorphs were verified via advanced solid state NMR analysis using 31P MAS and 31P{139La} double resonance techniques. A combination of phonon and electronic structure calculations, NMR T1 relaxation times, UV/Vis/NIR spectroscopy, and resistivity measurements revealed that all the reported polymorphs are semiconductors with resistivities and thermal conductivities strongly dependent on the degree of distortion of P square layers in the crystal structure. Reported here, non-centrosymmetric LnSiP3 polymorphs with tunable resistivity and thermal conductivity provide a platform for the development of novel functional materials with a wide range of applications.