Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28481, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576583

RESUMO

Probiotics have been applied to a wide range of bacteria, causing gastrointestinal and vaginal infections. However, probiotics generally possess limited antimicrobial spectra and are primarily utilized as dietary supplements. Recognizing the need for more versatile probiotics, this study focuses on isolating and characterizing strains suitable for antibiotic replacement. Among these strains, Weissella sp. SNUL2, derived from a traditional fermented food in Korea (i.e., Sikhae), emerged as a promising candidate. The correlation between optical density at 600 nm and colony-forming units was verified and applied in subsequent experiments. To assess the therapeutic potential of probiotics, antibacterial tests were conducted using a microplate reader to evaluate the inhibition of 60 bacterial strains (including common foodborne pathogens) induced by Weissella sp. SNUL2 cell-free supernatant (CFS). The results confirmed its broad-spectrum antibacterial properties compared to previously known probiotics. Furthermore, enzymatic treatment with proteinases (trypsin and pepsin) and a time-kill assay were conducted to elucidate the nature of the antibacterial substance in Weissella sp. SNUL2 CFS. Through sequential chromatography involving gel filtration and ion-exchange chromatography, specific fractions with enhanced antibacterial properties were identified. LC-MS/MS analysis of the secretome fraction revealed the presence of various proteins from the C39 family, peptidoglycan endopeptidases, and N-acetylmuramoyl-l-alanine amidase domain-containing protein precursors. Hence, the combined action of these proteins may contribute to Weissella sp. SNUL2's broad antimicrobial activity.

2.
J Microbiol ; 61(12): 1043-1062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38114662

RESUMO

Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.


Assuntos
Mucor , Fatores de Transcrição , Fatores de Transcrição/genética , Virulência/genética , Estresse Oxidativo , Proteínas Fúngicas/genética
3.
Antimicrob Agents Chemother ; 67(2): e0068622, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688672

RESUMO

Procedures such as solid-organ transplants and cancer treatments can leave many patients in an immunocompromised state. This leads to their increased susceptibility to opportunistic diseases such as fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Recently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available is the echinocandins. Echinocandins seem to be efficacious in the treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have little to no effect on Mucorales fungi. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding the echinocandin target protein ß-(1,3)-d-glucan synthase (fksA, fksB, and fksC). Interestingly, we found that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes, resulting in an increased accumulation of ß-(1,3)-d-glucan on the cell walls. However, this overexpression of the fks genes is not directly connected to the intrinsic resistance. Subsequent investigation discovered that the serine/threonine phosphatase calcineurin regulates the expression of fksA and fksB, and the deletion of calcineurin results in a decrease in expression of all three fks genes. Deletion of calcineurin also results in a lower minimum effective concentration (MEC) of micafungin. In addition, we found that duplication of the fks gene is also responsible for the intrinsic resistance, in which lack of either fksA or fksB led a lower MEC of micafungin. Together, these findings demonstrate that calcineurin and fks gene duplication contribute to the intrinsic resistance to micafungin we observe in M. circinelloides.


Assuntos
COVID-19 , Mucormicose , Micoses , Humanos , Micafungina/farmacologia , Micafungina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Calcineurina/genética , Calcineurina/farmacologia , SARS-CoV-2 , Mucor/genética , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Micoses/tratamento farmacológico , Serina , Farmacorresistência Fúngica/genética
4.
Intest Res ; 21(1): 148-160, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35692191

RESUMO

BACKGROUND/AIMS: The fecal microbiota of Korean patients with inflammatory bowel disease (IBD) was investigated with respect to disease phenotypes and taxonomic biomarkers for diagnosis and prognosis of IBD. METHODS: Fecal samples from 70 ulcerative colitis (UC) patients, 39 Crohn's disease (CD) patients, and 100 healthy control individuals (HC) were collected. The fecal samples were amplified via polymerase chain reaction and sequenced using Illumina MiSeq. The relationships between fecal bacteria and clinical phenotypes were analyzed using the EzBioCloud database and 16S microbiome pipeline. RESULTS: The alpha-diversity of fecal bacteria was significantly lower in UC and CD (P<0.05) compared to that in HC. Bacterial community compositions in UC and CD were significantly different from that of HC according to Bray-Curtis dissimilarities, and there was also a difference between community composition in UC and CD (P=0.01). In UC, alpha-diversity was further decreased when the disease was more severe and the extent of disease was greater, and community composition significantly differed depending on the extent of the disease. We identified 9 biomarkers of severity and 6 biomarkers of the extent of UC. We also identified 5 biomarkers of active disease and 3 biomarkers of ileocolonic involvement in CD. Lachnospiraceae and Ruminococcus gnavus were biomarkers for better prognosis in CD. CONCLUSIONS: The fecal microbiota profiles of IBD patients were different from those of HC, and several bacterial taxa may be used as biomarkers to determine disease phenotypes and prognosis. These data may also help discover new therapeutic targets for IBD.

5.
PLoS Pathog ; 18(10): e1010858, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36227854

RESUMO

Mucormycosis (previously called zygomycosis) is a serious but rare fungal infection caused by a group of fungi belonging to the order Mucorales. These molds exist throughout the environment and generally do not cause serious problems in humans. Mucormycosis mainly affects individuals who are immunocompromised. The clinical manifestations of mucormycosis are wide-ranging; they include sinusitis (pansinusitis, rhino-orbital, or rhino-cerebral) as well as cutaneous, gastrointestinal, pulmonary, and disseminate infections. Many uncertainties remain regarding how to control these infections despite the recent addition of triazoles to the antifungal arsenal for treating this infection. Currently, lipid formulations of amphotericin B have become the standard treatment for mucormycosis due to their efficiency. Moreover, a growing body of data supports the need for surgical excision of infected and/or necrosed tissue whenever practical. In this mini review, the current status of treatment options for mucormycosis and recent studies of novel therapeutic options will be presented.


Assuntos
Mucormicose , Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Desbridamento , Humanos , Lipídeos , Mucormicose/tratamento farmacológico , Triazóis/uso terapêutico
6.
J Fungi (Basel) ; 8(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35330291

RESUMO

Mucormycosis is an invasive fungal infection associated with high mortality, partly due to delayed diagnosis and inadequate empiric therapy. As fungal cultures often fail to grow Mucorales, identification of respective hyphae in tissue is frequently needed for diagnosis but may be challenging. We studied fluorescence in situ hybridization (FISH) targeting specific regions of the fungal ribosomal RNA (rRNA) of Mucorales to improve diagnosis of mucormycosis from tissue samples. We generated a probe combination specifically targeting Mucorales. Probe specificity was verified in silico and using cultivated fungi. Mucorales hyphae in tissue of a mouse model demonstrated a bright cytoplasmatic hybridization signal. In tissue samples of patients with mucormycosis, a positive signal was seen in 7 of 12 (58.3%) samples. However, autofluorescence in 3 of 7 (42.9%) samples impaired the diagnostic yield. Subsequent experiments suggested that availability of nutrients and antifungal therapy may impact on the FISH signal obtained with Mucorales hyphae. Diagnosis of mucormycosis from tissue might be improved by rRNA FISH in a limited number of cases only. FISH signals may reflect different physiological states of fungi in tissue. Further studies are needed to define the value of FISH to diagnose mucormycosis from other clinical samples.

7.
Front Mol Biosci ; 7: 588913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195437

RESUMO

Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.

8.
Genes (Basel) ; 11(8)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764225

RESUMO

Concerns about global warming, fossil-fuel depletion, food security, and human health have promoted metabolic engineers to develop tools/strategies to overproduce microbial functional oils directly from renewable resources. Medium-chain fatty acids (MCFAs, C8-C12) have been shown to be important sources due to their diverse biotechnological importance, providing benefits ranging from functional lipids to uses in bio-fuel production. However, oleaginous microbes do not carry native pathways for the production of MCFAs, and therefore, diverse approaches have been adapted to compensate for the requirements of industrial demand. Mucor circinelloides is a promising organism for lipid production (15-36% cell dry weight; CDW) and the investigation of mechanisms of lipid accumulation; however, it mostly produces long-chain fatty acids (LCFAs). To address this challenge, we genetically modified strain M. circinelloides MU758, first by integrating heterologous acyl-ACP thioesterase (TE) into fatty acid synthase (FAS) complex and subsequently by modifying the ß-oxidation pathway by disrupting the acyl-CoA oxidase (ACOX) and/or acyl-CoA thioesterase (ACOT) genes with a preference for medium-chain acyl-CoAs, to elevate the yield of MCFAs. The resultant mutant strains (M-1, M-2, and M-3, respectively) showed a significant increase in lipid production in comparison to the wild-type strain (WT). MCFAs in M-1 (47.45%) was sharply increased compared to the wild type strain (2.25%), and it was further increased in M-2 (60.09%) suggesting a negative role of ACOX in MCFAs production. However, MCFAs in M-3 were much decreased compared to M-1,suggesting a positive role of ACOT in MCFAs production. The M-2 strain showed maximum lipid productivity (~1800 milligram per liter per day or mg/L.d) and MCFAs productivity (~1100 mg/L.d). Taken together, this study elaborates on how the combination of two multidimensional approaches, TE gene over-expression and modification of the ß-oxidation pathway via substantial knockout of specific ACOX gene, significantly increased the production of MCFAs. This synergistic approach ultimately offers a novel opportunity for synthetic/industrial biologists to increase the content of MCFAs.


Assuntos
Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Mucor/metabolismo , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microbiologia Industrial/métodos , Mucor/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
9.
mBio ; 11(3)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605990

RESUMO

Trauma-related necrotizing myocutaneous mucormycosis (NMM) has a high morbidity and mortality in victims of combat-related injuries, geometeorological disasters, and severe burns. Inspired by the observation that several recent clusters of NMM have been associated with extreme mechanical forces (e.g., during tornados), we studied the impact of mechanical stress on Mucoralean biology and virulence in a Drosophila melanogaster infection model. In contrast to other experimental procedures to exert mechanical stress, tornadic shear challenge (TSC) by magnetic stirring induced a hypervirulent phenotype in several clinically relevant Mucorales species but not in Aspergillus or Fusarium Whereas fungal growth rates, morphogenesis, and susceptibility to noxious environments or phagocytes were not altered by TSC, soluble factors released in the supernatant of shear-challenged R. arrhizus spores rendered static spores hypervirulent. Consistent with a rapid decay of TSC-induced hypervirulence, minimal transcriptional changes were revealed by comparative RNA sequencing analysis of static and shear-challenged Rhizopus arrhizus However, inhibition of the calcineurin/heat shock protein 90 (hsp90) stress response circuitry by cyclosporine and tanespimycin abrogated the increased pathogenicity of R. arrhizus spores following TSC. Similarly, calcineurin loss-of-function mutants of Mucor circinelloides displayed no increased virulence capacity in flies after undergoing TSC. Collectively, these results establish that TSC induces hypervirulence specifically in Mucorales and point out the calcineurin/hsp90 pathway as a key orchestrator of this phenotype. Our findings invite future studies of topical calcineurin inhibitor treatment of wounds as an adjunct mitigation strategy for NMM following high-energy trauma.IMPORTANCE Given the limited efficacy of current medical treatments in trauma-related necrotizing mucormycosis, there is a dire need to better understand the Mucoralean pathophysiology in order to develop novel strategies to counteract fungal tissue invasion following severe trauma. Here, we describe that tornadic shear stress challenge transiently induces a hypervirulent phenotype in various pathogenic Mucorales species but not in other molds known to cause wound infections. Pharmacological and genetic inhibition of calcineurin signaling abrogated hypervirulence in shear stress-challenged Mucorales, encouraging further evaluation of (topical) calcineurin inhibitors to improve therapeutic outcomes of NMM after combat-related blast injuries or violent storms.


Assuntos
Calcineurina/metabolismo , Mucorales/patogenicidade , Estresse Mecânico , Células A549 , Animais , Drosophila melanogaster , Feminino , Fusarium/genética , Fusarium/patogenicidade , Humanos , Mucorales/genética , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Fenótipo , Rhizopus oryzae/genética , Rhizopus oryzae/patogenicidade , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Virulência
10.
Cell Microbiol ; 22(10): e13236, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562333

RESUMO

Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Mucor/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Genes Fúngicos , Hifas/crescimento & desenvolvimento , Mucor/metabolismo , Mucor/patogenicidade , Mutação , Micélio/crescimento & desenvolvimento , Oxigênio/análise , Transdução de Sinais , Virulência/genética
11.
mBio ; 11(1)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992620

RESUMO

Mucormycosis is an emerging lethal fungal infection in immunocompromised patients. Mucor circinelloides is a causal agent of mucormycosis and serves as a model system to understand genetics in Mucorales. Calcineurin is a conserved virulence factor in many pathogenic fungi, and calcineurin inhibition or deletion of the calcineurin regulatory subunit (CnbR) in Mucor results in a shift from hyphal to yeast growth. We analyzed 36 calcineurin inhibitor-resistant or bypass mutants that exhibited hyphal growth in the presence of calcineurin inhibitors or in the yeast-locked cnbRΔ mutant background without carrying any mutations in known calcineurin components. We found that a majority of the mutants had altered sequence in a gene, named here bycA (bypass of calcineurin). bycA encodes an amino acid permease. We verified that both the bycAΔ single mutant and the bycAΔ cnbRΔ double mutant are resistant to calcineurin inhibitor FK506, thereby demonstrating a novel mechanism of resistance against calcineurin inhibitors. We also found that the level of expression of bycA was significantly higher in the wild-type strain treated with FK506 and in the cnbRΔ mutants but was significantly lower in the wild-type strain without FK506 treatment. These findings suggest that bycA is a negative regulator of hyphal growth and/or a positive regulator of yeast growth in Mucor and that calcineurin suppresses expression of the bycA gene at the mRNA level to promote hyphal growth. BycA is involved in the Mucor hypha-yeast transition as our data demonstrate positive correlations among bycA expression, protein kinase A activity, and Mucor yeast growth. Also, calcineurin, independently of its role in morphogenesis, contributes to virulence traits, including phagosome maturation blockade, host cell damages, and proangiogenic growth factor induction during interactions with hosts.IMPORTANCEMucor is intrinsically resistant to most known antifungals, which makes mucormycosis treatment challenging. Calcineurin is a serine/threonine phosphatase that is widely conserved across eukaryotes. When calcineurin function is inhibited in Mucor, growth shifts to a less virulent yeast growth form, which makes calcineurin an attractive target for development of new antifungal drugs. Previously, we identified two distinct mechanisms through which Mucor can become resistant to calcineurin inhibitors involving Mendelian mutations in the gene for FKBP12, including mechanisms corresponding to calcineurin A or B subunits and epimutations silencing the FKBP12 gene. Here, we identified a third novel mechanism where loss-of-function mutations in the amino acid permease corresponding to the bycA gene contribute to resistance against calcineurin inhibitors. When calcineurin activity is absent, BycA can activate protein kinase A (PKA) to promote yeast growth via a cAMP-independent pathway. Our data also show that calcineurin activity contributes to host-pathogen interactions primarily in the pathogenesis of Mucor.


Assuntos
Antifúngicos/farmacologia , Inibidores de Calcineurina/farmacologia , Farmacorresistência Fúngica , Mucor/efeitos dos fármacos , Mucormicose/microbiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Mucor/genética , Mutação , RNA Mensageiro/genética , Virulência/genética , Fatores de Virulência/genética
12.
mSphere ; 5(1)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969481

RESUMO

Soo Chan Lee works in the field of medical mycology. In this mSphere of Influence article, he reflects on how "Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis" (Science 336:1314-1317, 2012, https://doi.org/10.1126/science.1221789) by I. D. Iliev, V. A. Funari, K. D. Taylor, Q. Nguyen, et al., "CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi" (Science 359:232-236, 2018, https://doi.org/10.1126/science.aao1503) by I. Leonardi, X. Li, A. Semon, D. Li, et al., and "The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL" (Nature 574:264-267, 2019, https://doi.org/10.1038/s41586-019-1608-2) by B. Aykut, S. Pushalkar, R. Chen, Q. Li, et al. made an impact on him to study medically important fungi by providing a forum to understand the roles of fungal microbiota or mycobiota in human diseases and health.


Assuntos
Doenças Transmissíveis/microbiologia , Disbiose , Fungos/patogenicidade , Micobioma , Humanos , Intestinos/microbiologia , Simbiose
13.
mSphere ; 4(6)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852807

RESUMO

Infections triggered by pathogenic fungi cause a serious threat to the public health care system. In particular, an increase of antifungal drug-resistant fungi has resulted in difficulty in treatment. A limited variety of antifungal drugs available to treat patients has left us in a situation where we need to develop new therapeutic approaches that are less prone to development of resistance by pathogenic fungi. In this study, we demonstrate the efficacy of the nanoemulsion NB-201, which utilizes the surfactant benzalkonium chloride, against human-pathogenic fungi. We found that NB-201 exhibited in vitro activity against Candidaalbicans, including both planktonic growth and biofilms. Furthermore, treatments with NB-201 significantly reduced the fungal burden at the infection site and presented an enhanced healing process after subcutaneous infections by multidrug-resistant C. albicans in a murine host system. NB-201 also exhibited in vitro growth inhibition activity against other fungal pathogens, including Cryptococcus spp., Aspergillus fumigatus, and Mucorales Due to the nature of the activity of this nanoemulsion, there is a minimized chance of drug resistance developing, presenting a novel treatment to control fungal wound or skin infections.IMPORTANCE Advances in medicine have resulted in the discovery and implementation of treatments for human disease. While these recent advances have been beneficial, procedures such as solid-organ transplants and cancer treatments have left many patients in an immunocompromised state. Furthermore, the emergence of immunocompromising diseases such as HIV/AIDS or other immunosuppressive medical conditions have opened an opportunity for fungal infections to afflict patients globally. The development of drug resistance in human-pathogenic fungi and the limited array of antifungal drugs has left us in a scenario where we need to develop new therapeutic approaches to treat fungal infections that are less prone to the development of resistance by pathogenic fungi. The significance of our work lies in utilizing a novel nanoemulsion formulation to treat topical fungal infections while minimizing risks of drug resistance development.


Assuntos
Antifúngicos/farmacologia , Compostos de Benzalcônio/farmacologia , Fungos/efeitos dos fármacos , Polissorbatos/farmacologia , Óleo de Soja/farmacologia , Animais , Antifúngicos/administração & dosagem , Compostos de Benzalcônio/administração & dosagem , Candidíase/tratamento farmacológico , Modelos Animais de Doenças , Combinação de Medicamentos , Camundongos , Testes de Sensibilidade Microbiana , Polissorbatos/administração & dosagem , Óleo de Soja/administração & dosagem , Resultado do Tratamento
14.
Nutr Res ; 69: 42-57, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31670066

RESUMO

Although maternal exercise before and during pregnancy is beneficial, the effects of exercise on microbiota changes during pregnancy are unknown. Here we tested the hypothesis that maternal exercise before and during pregnancy would positively affect glucose homeostasis, pancreatic cell function, and gut microbiota dysbiosis in high-fat diet (HFD) fed dams. Female C57BL/6 mice were fed either a HFD or a low-fat diet (LFD) for 12 weeks. The HFD mice were split into two groups for 4 weeks prior to pregnancy initiation and throughout the pregnancy: sedentary (HFD) or exercised (HFD + Ex). Food intake, body weight, body composition, and glucose and insulin tolerance were measured. At gestation day 19, blood, pancreas, gonadal visceral and subcutaneous fat, plantaris muscle, and cecum were collected for analysis. Both HFD and HFD + Ex mice had impaired glucose clearance compared to LFD mice at 15 days of gestation. No changes were found in pancreatic α- or ß-cell health. HFD + Ex mice had significantly reduced visceral fat mass, serum insulin, and leptin levels and increased high-density lipoprotein levels, compared to HFD-fed mice. In contrast to our hypothesis, microbiota diversity and composition were not different among groups. The relative abundance of five bacterial phyla, such as Firmicutes, Bacteroidetes, Verrucomicrobia, Deferribacteres, and Actinobacteria, were not significantly altered with diet or exercise during pregnancy. Our findings suggest that maternal exercise prevents excess visceral fat accumulation, hyperinsulinemia, and hyperleptinemia associated with a HFD, but not through the alterations of gut microbiota composition or diversity during pregnancy.


Assuntos
Comportamento Animal , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Doenças Metabólicas/prevenção & controle , Condicionamento Físico Animal/estatística & dados numéricos , Animais , Modelos Animais de Doenças , Feminino , Doenças Metabólicas/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/métodos , Gravidez
15.
Cell Host Microbe ; 26(4): 453-462, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600499

RESUMO

Calcium is an abundant intracellular ion, and calcium homeostasis plays crucial roles in several cellular processes. The calcineurin signaling cascade is one of the major pathways governed by intracellular calcium. Calcineurin, a conserved protein from yeast to humans, is a calcium-calmodulin-dependent serine-threonine-specific phosphatase that orchestrates cellular stress responses. In eukaryotic microbial pathogens, calcineurin controls essential virulence pathways, such as the ability to grow at host temperature, morphogenesis to enable invasive hyphal growth, drug tolerance and resistance, cell wall integrity, and sexual development. Therefore, the calcineurin cascade is an attractive target in drug development against eukaryotic pathogens. In the present review, we summarize and discuss the current knowledge on the roles of calcineurin in eukaryotic microbial pathogens, focusing on fungi and parasitic protists.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Fungos/patogenicidade , Parasitos/patogenicidade , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Humanos , Parasitos/crescimento & desenvolvimento , Parasitos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência
16.
Nat Commun ; 10(1): 4275, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537789

RESUMO

Calcineurin is important for fungal virulence and a potential antifungal target, but compounds targeting calcineurin, such as FK506, are immunosuppressive. Here we report the crystal structures of calcineurin catalytic (CnA) and regulatory (CnB) subunits complexed with FK506 and the FK506-binding protein (FKBP12) from human fungal pathogens (Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Coccidioides immitis). Fungal calcineurin complexes are similar to the mammalian complex, but comparison of fungal and human FKBP12 (hFKBP12) reveals conformational differences in the 40s and 80s loops. NMR analysis, molecular dynamic simulations, and mutations of the A. fumigatus CnA/CnB-FK506-FKBP12-complex identify a Phe88 residue, not conserved in hFKBP12, as critical for binding and inhibition of fungal calcineurin. These differences enable us to develop a less immunosuppressive FK506 analog, APX879, with an acetohydrazine substitution of the C22-carbonyl of FK506. APX879 exhibits reduced immunosuppressive activity and retains broad-spectrum antifungal activity and efficacy in a murine model of invasive fungal infection.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/metabolismo , Inibidores de Calcineurina/farmacologia , Calcineurina/metabolismo , Cryptococcus neoformans/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Tacrolimo/farmacologia , Animais , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Células Cultivadas , Coccidioides/efeitos dos fármacos , Coccidioides/metabolismo , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Cristalografia por Raios X , Descoberta de Drogas/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Tacrolimo/metabolismo
17.
Fungal Genet Biol ; 132: 103253, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31325489

RESUMO

The emergence of drug-resistant fungi poses a continuously increasing threat to human health. Despite advances in preventive care and diagnostics, resistant fungi continue to cause significant mortality, especially in immunocompromised patients. Therapeutic resources are further limited by current usage of only four major classes of antifungal drugs. Resistance against these drugs has already been observed in pathogenic fungi requiring the development of much needed newer antifungal drugs. Epigenetic changes such as DNA or chromatin modifications alter gene expression levels in response to certain stimuli, including interaction with the host in the case of fungal pathogens. These changes can confer resistance to drugs by altering the expression of target genes or genes encoding drug efflux pumps. Multiple pathogens share many of these epigenetic pathways; thus, targeting epigenetic pathways might also identify drug target candidates for the development of broad-spectrum antifungal drugs. In this review, we discuss the importance of epigenetic pathways in mediating drug resistance in fungi as well as in the development of anti-fungal drugs.


Assuntos
Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Epigênese Genética , Fungos/efeitos dos fármacos , Fungos/genética , Desenvolvimento de Medicamentos , Fungos/patogenicidade , Código das Histonas , Interações Hospedeiro-Patógeno , Humanos
18.
J Microbiol ; 57(6): 509-520, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012059

RESUMO

Mucor circinelloides is a pathogenic fungus and etiologic agent of mucormycosis. In 2013, cases of gastrointestinal illness after yogurt consumption were reported to the US FDA, and the producer found that its products were contaminated with Mucor. A previous study found that the Mucor strain isolated from an open contaminated yogurt exhibited virulence in a murine systemic infection model and showed that this strain is capable of surviving passage through the gastrointestinal tract of mice. In this study, we isolated another Mucor strain from an unopened yogurt that is closely related but distinct from the first Mucor strain and subsequently examined if Mucor alters the gut microbiota in a murine host model. DNA extracted from a ten-day course of stool samples was used to analyze the microbiota in the gastrointestinal tracts of mice exposed via ingestion of Mucor spores. The bacterial 16S rRNA gene and fungal ITS1 sequences obtained were used to identify taxa of each kingdom. Linear regressions revealed that there are changes in bacterial and fungal abundance in the gastrointestinal tracts of mice which ingested Mucor. Furthermore, we found an increased abundance of the bacterial genus Bacteroides and a decreased abundance of the bacteria Akkermansia muciniphila in the gastrointestinal tracts of exposed mice. Measurements of abundances show shifts in relative levels of multiple bacterial and fungal taxa between mouse groups. These findings suggest that exposure of the gastrointestinal tract to Mucor can alter the microbiota and, more importantly, illustrate an interaction between the intestinal mycobiota and bacteriota. In addition, Mucor was able to induce increased permeability in epithelial cell monolayers in vitro, which might be indicative of unstable intestinal barriers. Understanding how the gut microbiota is shaped is important to understand the basis of potential methods of treatment for gastrointestinal illness. How the gut microbiota changes in response to exposure, even by pathogens not considered to be causative agents of food-borne illness, may be important to how commercial food producers prevent and respond to contamination of products aimed at the public. This study provides evidence that the fungal microbiota, though understudied, may play an important role in diseases of the human gut.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Interações Microbianas/fisiologia , Mucor/fisiologia , Mucor/patogenicidade , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Permeabilidade da Membrana Celular , DNA Bacteriano/isolamento & purificação , DNA Fúngico , Modelos Animais de Doenças , Células Epiteliais , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Camundongos , Mucor/genética , Mucor/isolamento & purificação , Mucormicose/microbiologia , RNA Ribossômico 16S/genética , Virulência , Iogurte/microbiologia
19.
J Fungi (Basel) ; 5(1)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841504

RESUMO

Angiogenesis mediated by proteins such as Fibroblast Growth Factor-2 (FGF-2) is a vital component of normal physiological processes and has also been implicated in contributing to the disease state associated with various microbial infections. Previous studies by our group and others have shown that Candida albicans, a common agent of candidiasis, induces FGF-2 secretion in vitro and angiogenesis in brains and kidneys during systemic infections. However, the underlying mechanism(s) via which the fungus increases FGF-2 production and the role(s) that FGF-2/angiogenesis plays in C. albicans disease remain unknown. Here we show, for the first time, that C. albicans hyphae (and not yeast cells) increase the FGF-2 response in human endothelial cells. Moreover, Candidalysin, a toxin secreted exclusively by C. albicans in the hyphal state, is required to induce this response. Our in vivo studies show that in the systemic C. albicans infection model, mice treated with FGF-2 exhibit significantly higher mortality rates when compared to untreated mice not given the angiogenic growth factor. Even treatment with fluconazole could not fully rescue infected animals that were administered FGF-2. Our data suggest that the increase of FGF-2 production/angiogenesis induced by Candidalysin contributes to the pathogenicity of C. albicans.

20.
PLoS Genet ; 15(2): e1007957, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742617

RESUMO

Mucormycosis-an emergent, deadly fungal infection-is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance.


Assuntos
Farmacorresistência Fúngica Múltipla/genética , Mucor/efeitos dos fármacos , Mucor/patogenicidade , Antifúngicos/farmacologia , Epigênese Genética , Genes Fúngicos , Humanos , Mucor/genética , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Mutação , Orotato Fosforribosiltransferase/genética , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacologia , Orotidina-5'-Fosfato Descarboxilase/genética , Interferência de RNA , RNA Fúngico/genética , Sirolimo/farmacologia , Tacrolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA