Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 153: 113514, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076601

RESUMO

20(S)-Protopanaxadiol [20(S)-PPD] is a fully deglycosylated ginsenoside metabolite produced by the gut microbiota in the gastrointestinal tract. Although diverse pharmacological effects have been reported, information on the pharmacokinetic interactions of 20(S)-PPD with cytochrome P450s (CYPs) remains limited. Therefore, the inhibitory potential of 20(S)-PPD on CYP enzymes, which mainly contribute to drug pharmacokinetics, was investigated in this study. The inhibitory effect of 20(S)-PPD was strong for CYP3A4 and moderate for CYP2B6 in human liver microsomes. 20(S)-PPD inhibited Cyp3a and Cyp2b in mouse liver microsomes with a potency similar to that in humans. The solubility of 20(S)-PPD in the artificial intestinal fluid was close to IC50 values of Cyp3a and Cyp2b in the mouse intestine. Systemic exposure to buspirone (Cyp3a specific substrate) and bupropion (Cyp2b specific substrate) increased significantly, whereas the area under the plasma concentration-time curve (AUC) ratio of metabolite to parent drug decreased significantly when co-administered with 20(S)-PPD in mice. The pharmacokinetics of felodipine, a widely used anti-hypertensive agent metabolized mainly by Cyp3a, was also altered following 20(S)-PPD treatment in mice. In conclusion, 20(S)-PPD likely affects the in vivo metabolism of CYP3A4 or CYP2B6 substrates, suggesting a need for careful attention when concomitantly administering 20(S)-PPD with other medications. This study will broaden our understanding of ginseng and products containing precursor ginsenosides of 20(S)-PPD for safer and more efficient use in humans.


Assuntos
Sistema Enzimático do Citocromo P-450 , Ginsenosídeos , Sapogeninas , Animais , Citocromo P-450 CYP2B6/efeitos dos fármacos , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Ginsenosídeos/farmacologia , Humanos , Camundongos , Sapogeninas/farmacologia
2.
Life (Basel) ; 10(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126646

RESUMO

Several air pollution components such as sulfur dioxide, ozone, nitrogen dioxide, and diesel exhaust particulate matter (DEPM) have been linked to the development of asthma. In this study, we investigated the therapeutic potential of three lactic acid bacteria species, Lactobacillus plantarum GREEN CROSS Wellbeing (GCWB)1001, Pediococcus acidilactici GCWB1085, and Lactobacillus rhamnosus GCWB1156, in preventing DEPM-exacerbated asthma in mice. BALB/c mice were first sensitized with ovalbumin (OVA) and were either challenged with OVA or DEPM (DEPM-exacerbated asthma model) by intranasal instillation. All three strains showed no hemolytic activity, suggesting a good safety profile. Oral administration of lactic acid bacteria reduced OVA + DEPM-induced inflammatory infiltration, goblet cell hyperplasia, airway remodeling, and the levels of proinflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF). The probiotics also attenuated OVA + DEPM-induced immunoglobulin E (IgE) levels in serum and in BALF, and significantly reduced caspase-3 activity, total collagen level, and matrix metalloproteinase (MMP)-9 activity. In conclusion, lactic acid bacteria such as L. plantarum GCWB1001, P. acidilactici GCWB1085, and L. rhamnosus treatment in mice with asthma showed significant efficacy in preventing lung inflammation exacerbated by DEPM administration.

3.
Microorganisms ; 8(8)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748895

RESUMO

Recently, Lactococcus lactis subsp. lactis has been reported to have immunostimulating properties in an immunosuppressed-animal model. However, the immunological activities of Lactococcus lactis and the molecular mechanisms remain unclear. In this report, we evaluated the immunostimulating activity and associated mechanisms of Lactococcus lactis subsp. lactis GCWB1176 (GCWB1176) in macrophages and cyclophosphamide (CTX)-induced immunosuppressed mice. In a series of safety tests, GCWB1176 was found to have a negative response to hemolysis, as well as susceptibility to antibiotics. Administration of GCWB1176 elevated natural killer (NK) cell activities; concanavalin A-induced T cell proliferation; and serum levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-10 and IL-12 in CTX-induced immunosuppressed mice. In RAW264.7 macrophages, treatment with GCWB1176 induced phagocytic activity and increased the production of nitric oxide (NO) and expression of inducible NO synthase. Simultaneously, GCWB1176 increased the production of TNF-α, IFN-γ, IL-1ß, IL-10 and IL-12 from mouse splenocytes and RAW264.7 cells. In addition, GCWB1176 significantly increased the transcriptional activities of NF-κB and iNOS. Taken together, GCWB1176 improved immune function through the activation of macrophages and NK cells. These findings suggest that dietary supplementation of GCWB1176 may be used to enhance immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA