Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Adv Mater ; : e2404856, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109569

RESUMO

Metal halide perovskite light-emitting diodes (PeLEDs) have exceptional color purity but designs that emit deep-blue color with high efficiency have not been fully achieved and become more difficult in the thin film of confined perovskite colloidal quantum dots (PeQDs) due to particle interaction. Here it is demonstrated that electronic coupling and energy transfer in PeQDs induce redshift in the emission by PeQD film, and consequently hinder deep-blue emission. To achieve deep-blue emission by avoiding electronic coupling and energy transfer, a QD-in-organic solid solution is introduced to physically separate the QDs in the film. This physical separation of QDs reduces the interaction between them yielding a blueshift of ≈7 nm in the emission spectrum. Moreover, using a hole-transporting organic molecule with a deep-lying highest occupied molecular orbital (≈6.0 eV) as the organic matrix, the formation of exciplex emission is suppressed. As a result, an unprecedently high maximum external quantum efficiency of 6.2% at 462 nm from QD-in-organic solid solution film in PeLEDs is achieved, which satisfies the deep-blue color coordinates of CIEy < 0.06. This work suggests an important material strategy to deepen blue emission without reducing the particle size to <≈4 nm.

2.
Nat Commun ; 15(1): 6245, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048540

RESUMO

Reducing the size of perovskite crystals to confine excitons and passivating surface defects has fueled a significant advance in the luminescence efficiency of perovskite light-emitting diodes (LEDs). However, the persistent gap between the optical limit of electroluminescence efficiency and the photoluminescence efficiency of colloidal perovskite nanocrystals (PeNCs) suggests that defect passivation alone is not sufficient to achieve highly efficient colloidal PeNC-LEDs. Here, we present a materials approach to controlling the dynamic nature of the perovskite surface. Our experimental and theoretical studies reveal that conjugated molecular multipods (CMMs) adsorb onto the perovskite surface by multipodal hydrogen bonding and van der Waals interactions, strengthening the near-surface perovskite lattice and reducing ionic fluctuations which are related to nonradiative recombination. The CMM treatment strengthens the perovskite lattice and suppresses its dynamic disorder, resulting in a near-unity photoluminescence quantum yield of PeNC films and a high external quantum efficiency (26.1%) of PeNC-LED with pure green emission that matches the Rec.2020 color standard for next-generation vivid displays.

3.
ACS Nano ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058962

RESUMO

In the Fourth Industrial Revolution, as the connection between objects and people becomes increasingly important, interest in wearable optoelectronic device-based medical diagnosis is on the rise. Pulse oximetry sensors based on a fiber platform, which is the smallest unit of clothing, could be considered an attractive candidate for this application. In this study, red and green quantum-dot light-emitting fibers (QDLEFs) based on a 250 µm-diameter 1-dimensional fiber were successfully implemented, achieving high current efficiencies of approximately 22.46 mW/sr/A and 23.6 mW/sr/A and narrow full-width at half-maximum (FWHM) of about 33 nm, respectively. In addition, its omnidirectional flexibility was confirmed through a vertical and lateral bending test with 0.92% strain. By employing a transparent and flexible elastomer, a wearable pulse oximeter incorporating QDLEFs was successfully demonstrated for oxygen saturation level (SpO2) monitoring on finger and wrist. It was demonstrated to be washable, and could be operated for up to about 18 h. Due to the elastomer and bottom emission, it exhibited excellent wear resistance characteristics in a 50 cycle reciprocating test conducted at about 2180.43 kPa with 220-grit abrasive paper sheet. A theoretical investigation based on modified photon diffusion analysis (MPDA) modeling also determined that using narrow FWHM light sources, such as QDLEFs, improves the resolution and accuracy of SpO2 monitoring. Accordingly, the proposed QDLEF showed distinguished potential as an all-in-one clothing type pulse oximetry.

4.
Sci Total Environ ; 941: 173701, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844232

RESUMO

Although biomass is carbon-neutral, its use as a primary feedstock faces challenges arising from inconsistent supply chains. Therefore, it becomes crucial to explore alternatives with reliable availability. This study proposes a strategic approach for the thermochemical valorization of food processing waste, which is abundantly generated at single sites within large-scale processing plants. As a model biomass waste from the food industry, orange peel waste was particularly chosen considering its substantial consumption. To impart sustainability to the pyrolysis system, CO2, a key greenhouse gas, was introduced. As such, this study highlights elucidating the functionality of CO2 as a reactive feedstock. Specifically, CO2 has the potential to react with volatile pyrolysates evolved from orange peel waste, leading to CO formation at ≥490 °C. The formation of chemical constituents, encompassing acids, ketones, furans, phenols, and aromatics, simultaneously decreased by 15.1 area% in the presence of CO2. To activate the efficacy of CO2 at the broader temperature spectrum, supplementary measures, such as an additional heating element (700 °C) and a nickel-based catalyst (Ni/Al2O3), were implemented. These configurations promote thermal cracking of the volatiles and their reaction kinetics with CO2, representing an opportunity for enhanced carbon utilization in the form of CO. Finally, the integrated process of CO2-assisted catalytic pyrolysis and water-gas shift reaction was proposed. A potential revenue when maximizing the productivity of H2 was estimated as 2.62 billion USD, equivalent to 1.11 times higher than the results from the inert (N2) environment. Therefore, utilizing CO2 in the pyrolysis system creates a promising approach for enhancing the sustainability of the thermochemical valorization platform while maximizing carbon utilization in the form of CO.

5.
J Hazard Mater ; 476: 134916, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38909465

RESUMO

Plastic-based insulation materials have been widely employed owing to their exceptional durability, cost-effectiveness, low weight, and low thermal conductivity. Nevertheless, the disposal of the insulation material waste (IMW) within construction waste and its recycling and recovery are challenging. Meanwhile, landfilling or incineration methods can release toxic chemicals into the environment. Consequently, the accumulation of IMW in construction waste has become a pressing environmental concern. To address this issue, this paper proposes a pyrolysis platform as a disposal management method for IMW that employs CO2 as a reactive medium. IMW composed of polystyrene in the form of extruded polystyrene underwent pyrolysis to yield pyrogenic products containing toxic chemicals. These toxic chemicals were subsequently transformed into syngas via homogeneous reactions with CO2 under certain thermal conditions and Ni/Al2O3 catalyst. This resulted in a significant reduction in the total peak areas of toxic substances in the pyrogenic oil compared with that obtained using N2 as a medium. Furthermore, the efficacy of CO2 was demonstrated to increase with an increase in the atmospheric concentration. This study implied that catalytic pyrolysis under CO2 conditions is a potential platform for converting toxic chemicals from IMW into syngas through homogeneous reactions with CO2.

6.
Small ; : e2400959, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940380

RESUMO

Synthesis of perovskites that exhibit pure-blue emission with high photoluminescence quantum yield (PLQY) in both nanocrystal solutions and nanocrystal-only films presents a significant challenge. In this work, a room-temperature method is developed to synthesize ultrasmall, monodispersed, Sn-doped methylammonium lead bromide (MAPb1- xSnxBr3) perovskite nanoplatelets (NPLs) in which the strong quantum confinement effect endows pure blue emission (460 nm) and a high quantum yield (87%). Post-treatment using n-hexylammonium bromide (HABr) repaired surface defects and thus substantially increased the stability and PLQY (80%) of the NPL films. Concurrently, high-precision patterned films (200-µm linewidth) are successfully fabricated by using cost-effective spray-coating technology. This research provides a novel perspective for the preparation of high PLQY, highly stable, and easily processable perovskite nanomaterials.

7.
Biosens Bioelectron ; 261: 116444, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850740

RESUMO

Electrolyte-gated organic synaptic transistors (EGOSTs) can have versatile synaptic plasticity in a single device, so they are promising as components of neuromorphic implants that are intended for use in neuroprosthetic electronic nerves that are energy-efficient and have simple system structure. With the advancement in transistor properties of EGOSTs, the commercialization of neuromorphic implants for practical long-term use requires consistent operation, so they must be stable in vivo. This requirement demands strategies that maintain electronic and ionic transport in the devices while implanted in the human body, and that are mechanically, environmentally, and operationally stable. Here, we cover the structure, working mechanisms, and electrical responses of EGOSTs. We then focus on strategies to ensure their stability to maintain these characteristics and prevent adverse effects on biological tissues. We also highlight state-of-the-art neuromorphic implants that incorporate these strategies. We conclude by presenting a perspective on improvements that are needed in EGOSTs to develop practical, neuromorphic implants that are long-term useable.


Assuntos
Técnicas Biossensoriais , Eletrólitos , Transistores Eletrônicos , Humanos , Técnicas Biossensoriais/instrumentação , Eletrólitos/química , Próteses e Implantes , Desenho de Equipamento , Plasticidade Neuronal , Sinapses/fisiologia , Animais
8.
ACS Nano ; 18(26): 16905-16913, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904449

RESUMO

While two-dimensional transition metal dichalcogenides (TMDCs)-based photodetectors offer prospects for high integration density and flexibility, their thinness poses a challenge regarding low light absorption, impacting photodetection sensitivity. Although the integration of TMDCs with metal halide perovskite nanocrystals (PNCs) has been known to be promising for photodetection with a high absorption coefficient of PNCs, the low charge mobility of PNCs delays efficient photocarrier injection into TMDCs. In this study, we integrated MoS2 with in situ formed core/shell PNCs with short ligands that minimize surface defects and enhance photocarrier injection. The PNCs/MoS2 heterostructure efficiently separates electrons and holes by establishing type II band alignment and consequently inducing a photogating effect. The synergistic interplay between photoconductive and photogating effects yields a high responsivity of 2.2 × 106 A/W and a specific detectivity of 9.0 × 1011 Jones. Our findings offer a promising pathway for developing low-cost, high-performance phototransistors leveraging the advantages of two-dimensional (2D) materials.

9.
Adv Mater ; : e2400627, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724020

RESUMO

Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide-based phase change materials (PCMs) offer great promise due to their non-volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub-micron-sized. To incorporate phase change materials into free-space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non-mechanical, non-volatile transmissive filter based on low-loss PCMs with a 200 × 200 µm2 switching area. The device/metafilter can be consistently switched between low- and high-transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free-space reconfigurable optics based on PCMs.

10.
Adv Mater ; 36(29): e2401788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708900

RESUMO

The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.

11.
Soft Matter ; 20(8): 1815-1823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305433

RESUMO

Polymer stabilized cholesteric liquid crystals (PSCLCs) are electrically reconfigurable reflective elements. Prior studies have hypothesized and indirectly confirmed that the electro-optic response of these composites is associated with the electrically mediated distortion of the stabilizing polymer network. The proposed mechanism is based on the retention of structural chirality in the polymer stabilizing network, which upon deformation is spatially distorted, which accordingly affects the pitch of the surrounding low molar-mass liquid crystal host. Here, we utilize fluorescent confocal polarized microscopy to directly assess the electro-optic response of PSCLCs. By utilizing dual fluorescent probes, sequential imaging experiments confirm that the periodicity of the polymer stabilizing network matches that of the low molar-mass liquid crystal host. Further, we isolate distinct ion-polymer interactions that manifest in certain photopolymerization conditions.

12.
Adv Healthc Mater ; : e2303797, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368254

RESUMO

Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.

13.
Proc Natl Acad Sci U S A ; 121(5): e2316170121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252814

RESUMO

Hemostatic devices are critical for managing emergent severe bleeding. With the increased use of anticoagulant therapy, there is a need for next-generation hemostats. We rationalized that a hemostat with an architecture designed to increase contact with blood, and engineered from a material that activates a distinct and undrugged coagulation pathway can address the emerging need. Inspired by lung alveolar architecture, here, we describe the engineering of a next-generation single-phase chitosan hemostat with a tortuous spherical microporous design that enables rapid blood absorption and concentrated platelets and fibrin microthrombi in localized regions, a phenomenon less observed with other classical hemostats without structural optimization. The interaction between blood components and the porous hemostat was further amplified based on the charged surface of chitosan. Contrary to the dogma that chitosan does not directly affect physiological clotting mechanism, the hemostat induced coagulation via a direct activation of platelet Toll-like receptor 2. Our engineered porous hemostat effectively stopped the bleeding from murine liver wounds, swine liver and carotid artery injuries, and the human radial artery puncture site within a few minutes with significantly reduced blood loss, even under the anticoagulant treatment. The integration of engineering design principles with an understanding of the molecular mechanisms can lead to hemostats with improved functions to address emerging medical needs.


Assuntos
Quitosana , Humanos , Animais , Camundongos , Suínos , Hemorragia/tratamento farmacológico , Coagulação Sanguínea , Plaquetas , Anticoagulantes/farmacologia
14.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257687

RESUMO

This paper introduces an efficient barrier model for enhancing smart building surveillance in harsh environment with thin walls and structures. After the main research problem of minimizing the total number of wall-recognition surveillance barriers, we propose two distinct algorithms, Centralized Node Deployment and Adaptation Node Deployment, which are designed to address the challenge by strategic placement of surveillance nodes within the smart building. The Centralized Node Deployment aligns nodes along the thin walls, ensuring consistent communication coverage and effectively countering potential disruptions. Conversely, the Adaptation Node Deployment begins with random node placement, which adapts over time to ensure efficient communication across the building. The novelty of this work is in designing a novel barrier system to achieve energy efficiency and reinforced surveillance in a thin-wall environment. Instead of a real environment, we use an ad hoc server for simulations with various scenarios and parameters. Then, two different algorithms are executed through those simulation environments and settings. Also, with detailed discussions, we provide the performance analysis, which shows that both algorithms deliver similar performance metrics over extended periods, indicating their suitability for long-term operation in smart infrastructure.

15.
ACS Appl Mater Interfaces ; 16(2): 2457-2466, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166386

RESUMO

Recent studies have focused on exploring the potential of resistive random-access memory (ReRAM) utilizing halide perovskites as novel data storage devices. This interest stems from its notable attributes, including a high ON/OFF ratio, low operating voltages, and exceptional mechanical properties. Nevertheless, there have been reports indicating that memory systems utilizing halide perovskites encounter certain obstacles pertaining to their stability and dependability, mostly assessed through endurance and retention time. Moreover, the presence of these problems can potentially restrict their practical applicability. This study explores a resistive switching memory device utilizing MAPbBr3 perovskite, which demonstrates bipolar switching characteristics. The device fabrication procedure involves a low-temperature, all-solution process. For the purpose of enhancing the device's reliability, the utilization of TPBI(2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) as an electron transfer material on the MAPbBr3 switching layer was implemented for the first time. The formation and rupture of Ag filaments in the MAPbBr3 perovskite switching layer are attributed to reduction-oxidation reactions. The TPBI is involved in the regulation of filaments during the SET and RESET processes. Hence, it can be shown that the MAPbBr3 device incorporating TPBI exhibited about 1000 endurance cycles when subjected to continuous voltage pulses. Moreover, the device consistently maintained ON/OFF ratios above 107. In contrast, the original MAPbBr3 device without TPBI demonstrated a significantly lower endurance with only 90 cycles observed. In addition, the MAPbBr3 device integrated with TPBI exhibited a retention time exceeding 3 × 103 s. The findings of this research provide compelling evidence to support the notion that electron transfer materials have promise for the development of halide perovskite memory systems owing to their favorable attributes of dependability and stability.

16.
Nat Nanotechnol ; 19(5): 624-631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228805

RESUMO

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising new light source for displays. The development roadmap for commercializing PeLEDs should include a tandem device structure, specifically by stacking a thin nanocrystal PeLED unit and an organic light-emitting diode unit, which can achieve a vivid and efficient tandem display; however, simply combining light-emitting diodes with different characteristics does not guarantee both narrowband emission and high efficiency, as it may cause a broadened electroluminescence spectra and a charge imbalance. Here, by conducting optical simulations of the hybrid tandem (h-tandem) PeLED, we have discovered a crucial optical microcavity structure known as the h-tandem valley, which enables the h-tandem PeLED to emit light with a narrow bandwidth. Specifically, the centre structure of the h-tandem valley (we call it valley-centre tandem) demonstrates near-perfect charge balance and optimal microcavity effects. As a result, the h-tandem PeLED achieves a high external quantum efficiency of 37.0% and high colour purity with a narrow full-width at half-maximum of 27.3 nm (versus 64.5 nm in organic light-emitting diodes) along with a fast on-off response. These findings offer a new strategy to overcome the limitations of nanocrystal-based PeLEDs, providing valuable optical and electrical guidelines for integrating different types of light-emitting device into practical display applications.

17.
Adv Mater ; 36(14): e2310498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169481

RESUMO

Monolayer transition metal dichalcogenides (TMDs) have drawn significant attention for their potential in optoelectronic applications due to their direct band gap and exceptional quantum yield. However, TMD-based light-emitting devices have shown low external quantum efficiencies as imbalanced free carrier injection often leads to the formation of non-radiative charged excitons, limiting practical applications. Here, electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe2) light-emitting transistors (LETs) based on the van der Waals heterostructure is demonstrated. The WSe2 channel is locally doped to simultaneously inject electrons and holes to the 1D region by a local graphene gate. At balanced concentrations of injected electrons and holes, the WSe2 LETs exhibit strong EL with a high external quantum efficiency (EQE) of ≈8.2 % at room temperature. These experimental and theoretical results consistently show that the enhanced EQE could be attributed to dominant exciton emission confined at the 1D region while expelling charged excitons from the active area by precise control of external electric fields. This work shows a promising approach to enhancing the EQE of 2D light-emitting transistors and modulating the recombination of exciton complexes for excitonic devices.

18.
Light Sci Appl ; 12(1): 232, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714838

RESUMO

Perovskite light emitters can realize bright, stable and efficient light-emitting diodes through a molecular design strategy that enables strong endurance on high-current operation.

19.
ACS Appl Mater Interfaces ; 15(33): 39461-39471, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555994

RESUMO

Inorganic perovskite nanocrystals (IPNCs) have attracted considerable attention due to their excellent optoelectronic properties. However, problems arise from anion migration during the preparation of a blue light-emitting diode (LED), and only small-scale syntheses have been conducted on a laboratory scale. By using only Br as the anion here, CsPbBr3 was synthesized in the form of nanoplatelets to eliminate the effects of anion migration and to prepare an inorganic perovskite nanoplatelet (IPNPL) emitting blue light. In addition, the synthesis was performed under ambient conditions at room temperature, and the synthetic process was shortened to enable large-scale synthesis. We used a 1 L bottle for large-scale synthesis, and a photoluminescence quantum yield (PLQY) of 78% was observed at 460 nm. We fabricated LEDs by using IPNPLs, and we observed an electroluminescence peak at 461 nm. The developed synthetic method is expected to pave the way for commercialization of IPNCs and the next-generation display market.

20.
Small ; 19(50): e2304145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649187

RESUMO

Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide-based phase-change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid-state structural phases. Although significant efforts have been devoted to accurate simulation of PCM-based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid-phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above-mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM-based photonic devices and can inform the development of more efficient reconfigurable optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA