Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39293806

RESUMO

High-throughput experiments often produce ranked gene outputs, with forward genetic screening being a notable example. While there are various tools for analyzing individual datasets, those that perform comparative and meta-analytical examination of such ranked gene lists remain scarce. Here, we introduce Gene Rank Meta Analyzer (GeneRaMeN), an R Shiny tool utilizing rank statistics to facilitate the identification of consensus, unique, and correlated genes across multiple hit lists. We focused on two key topics to showcase GeneRaMeN: virus host factors and cancer dependencies. Using GeneRaMeN 'Rank Aggregation', we integrated 24 published and new flavivirus genetic screening datasets, including dengue, Japanese encephalitis, and Zika viruses. This meta-analysis yielded a consensus list of flavivirus host factors, elucidating the significant influence of cell line selection on screening outcomes. Similar analysis on 13 SARS-CoV-2 CRISPR screening datasets highlighted the pivotal role of meta-analysis in revealing redundant biological pathways exploited by the virus to enter human cells. Such redundancy was further underscored using GeneRaMeN's 'Rank Correlation', where a strong negative correlation was observed for host factors implicated in one entry pathway versus the alternate route. Utilizing GeneRaMeN's 'Rank Uniqueness', we analyzed human coronaviruses 229E, OC43, and SARS-CoV-2 datasets, identifying host factors uniquely associated with a defined subset of the screening datasets. Similar analyses were performed on over 1000 Cancer Dependency Map (DepMap) datasets spanning 19 human cancer types to reveal unique cancer vulnerabilities for each organ/tissue. GeneRaMeN, an efficient tool to integrate and maximize the usability of genetic screening datasets, is freely accessible via https://ysolab.shinyapps.io/GeneRaMeN.


Assuntos
SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Neoplasias/genética , Biologia Computacional/métodos , Software
2.
Emerg Microbes Infect ; 12(2): 2256416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672505

RESUMO

The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/genética , SARS-CoV-2 , Receptores de Hidrocarboneto Arílico/genética , Linhagem Celular
3.
PLoS Pathog ; 18(8): e1010763, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939522

RESUMO

Transmembrane Protein 41B (TMEM41B) and Vacuole Membrane Protein 1 (VMP1) are two ER-associated lipid scramblases that play a role in autophagosome formation and cellular lipid metabolism. TMEM41B is also a recently validated host factor required by flaviviruses and coronaviruses. However, the exact underlying mechanism of TMEM41B in promoting viral infections remains an open question. Here, we validated that both TMEM41B and VMP1 are essential host dependency factors for all four serotypes of dengue virus (DENV) and human coronavirus OC43 (HCoV-OC43), but not chikungunya virus (CHIKV). While HCoV-OC43 failed to replicate entirely in both TMEM41B- and VMP1-deficient cells, we detected diminished levels of DENV infections in these cell lines, which were accompanied by upregulation of the innate immune dsRNA sensors, RIG-I and MDA5. Nonetheless, this upregulation did not correspondingly induce the downstream effector TBK1 activation and Interferon-beta expression. Despite low levels of DENV replication, classical DENV replication organelles were undetectable in the infected TMEM41B-deficient cells, suggesting that the upregulation of the dsRNA sensors is likely a consequence of aberrant viral replication rather than a causal factor for reduced DENV infection. Intriguingly, we uncovered that the inhibitory effect of TMEM41B deficiency on DENV replication, but not HCoV-OC43, can be partially reversed using exogenous fatty acid supplements. In contrast, VMP1 deficiency cannot be rescued using the metabolite treatment. In line with the observed phenotypes, we found that both TMEM41B- and VMP1-deficient cells harbor higher levels of compromised mitochondria, especially in VMP1 deficiency which results in severe dysregulations of mitochondrial beta-oxidation. Using a metabolomic profiling approach, we revealed distinctive global dysregulations of the cellular metabolome, particularly lipidome, in TMEM41B- and VMP1-deficient cells. Our findings highlight a central role for TMEM41B and VMP1 in modulating multiple cellular pathways, including lipid mobilization, mitochondrial beta-oxidation, and global metabolic regulations, to facilitate the replication of flaviviruses and coronaviruses.


Assuntos
Infecções por Coronavirus , Coronavirus , Dengue , Metabolismo Energético , Humanos , Lipídeos , Proteínas de Membrana/genética , Replicação Viral
4.
Curr Opin Virol ; 50: 159-170, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34488003

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiologic agent that causes Coronavirus Disease 2019 (COVID-19) pandemic, is a newly emerging respiratory RNA virus with exceptional transmissibility and pathogenicity. Numerous COVID-19 related studies have been fast-tracked, with the ultimate goal to end the pandemic. Here we review the major stages of SARS-CoV-2 infection cycle in cells, with specific emphasis on essential host factors. Insights into the cell biology of SARS-CoV-2 infection have accelerated the development of host-directed therapeutics, as shown by dozens of clinical trials evaluating COVID-19 treatments using host-targeting compounds.


Assuntos
COVID-19/etiologia , SARS-CoV-2/fisiologia , Catepsina L/fisiologia , Humanos , RNA Viral/biossíntese , SARS-CoV-2/genética , Montagem de Vírus , Internalização do Vírus , Tratamento Farmacológico da COVID-19
5.
Nat Microbiol ; 6(4): 455-466, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33510473

RESUMO

The most frequent fetal birth defect associated with prenatal Zika virus (ZIKV) infection is brain calcification, which in turn may potentially affect neurological development in infants. Understanding the mechanism could inform the development of potential therapies against prenatal ZIKV brain calcification. In perivascular cells, bone morphogenetic protein (BMP) is an osteogenic factor that undergoes maturation to activate osteogenesis and calcification. Here, we show that ZIKV infection of cultivated primary human brain pericytes triggers BMP2 maturation, leading to osteogenic gene expression and calcification. We observed extensive calcification near ZIKV+ pericytes of fetal human brain specimens and in vertically transmitted ZIKV+ human signal transducer and activator of transcription 2-knockin mouse pup brains. ZIKV infection of primary pericytes stimulated BMP2 maturation, inducing osteogenic gene expression and calcification that were completely blocked by anti-BMP2/4 neutralizing antibody. Not only did ZIKV NS3 expression alone induce BMP2 maturation, osteogenic gene expression and calcification, but purified NS3 protease also effectively cleaved pro-BMP2 in vitro to generate biologically active mature BMP2. These findings highlight ZIKV-induced calcification where the NS3 protease subverts the BMP2-mediated osteogenic signalling pathway to trigger brain calcification.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Encéfalo/patologia , Calcinose/patologia , Feto/patologia , Serina Endopeptidases/metabolismo , Proteínas Virais/metabolismo , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Proteína Morfogenética Óssea 2/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia , Calcinose/metabolismo , Calcinose/virologia , Cálcio/metabolismo , Células Cultivadas , Feto/virologia , Humanos , Transmissão Vertical de Doenças Infecciosas , Camundongos , Camundongos Transgênicos , Osteogênese/genética , Pericitos , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Zika virus/enzimologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
6.
Parasit Vectors ; 12(1): 165, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975197

RESUMO

Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primarily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the mosquito's ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and concise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mosquitoes and Wolbachia-infected mosquitoes for resistance to pathogens.


Assuntos
Culicidae/imunologia , Culicidae/virologia , Animais , Humanos , Imunidade Inata , Controle de Mosquitos , Interferência de RNA , RNA Viral
7.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385728

RESUMO

BACKGROUND: An intricate fetal-maternal immune crosstalk during pregnancy is essential for a healthy birth. Hence, the infection-induced alterations of maternal immunity often lead to adverse outcomes for mother and/or child. The emergence of Zika virus (ZIKV) infection in pregnant women has been associated with more than 3,000 cases of microcephaly and nervous system malformations. METHODS: To explore the potential correlation of ZIKV-induced alteration of maternal immunity with fetal abnormalities, we performed extensive sera immunoprofiling of 74 pregnant women: 30 symptomatic ZIKV+ pregnant patients and 30 healthy pregnant controls in ZIKV-endemic Rio de Janeiro, along with 14 healthy pregnant controls in non-endemic Los Angeles. RESULTS: Extensive multiplexing analysis of 69 cytokines revealed that CXCL10, CCL2, and CCL8 chemokines were specifically associated with symptomatic ZIKV+ infection during pregnancy, and distinct immunoprofiles were detected at different trimesters in ZIKV-infected pregnant women. Intriguingly, the high CCL2 level and its inverse correlation with CD163, TNFRSF1A, and CCL22 levels was apparently associated with ZIKV-induced abnormal birth. CONCLUSION: Our findings provide insights into the alteration of ZIKV-elicited maternal immunity, serving as a potential clinical biomarker platform. FUNDING: NIH (CA200422, CA180779, DE023926, AI073099, AI116585, AI129496, AI140705, AI069120, AI056154, AI078389, AI28697, AI40718 and AI129534-01), Hastings Foundation, Fletcher Jones Foundation, Departamento de Ciência e Tecnologia (DECIT/25000.072811/2016-17) do Ministério da Saúde do Brasil, and Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior CAPES/88887.116627/2016-01.


Assuntos
Biomarcadores/metabolismo , Feto/anormalidades , Microcefalia/etiologia , Infecção por Zika virus/metabolismo , Zika virus/imunologia , Adolescente , Adulto , Biomarcadores/sangue , Brasil/epidemiologia , Citocinas/sangue , Citocinas/metabolismo , Feminino , Feto/metabolismo , Feto/virologia , Voluntários Saudáveis , Humanos , Imunidade Materno-Adquirida/fisiologia , Microcefalia/epidemiologia , Gravidez , Resultado da Gravidez/epidemiologia , Trimestres da Gravidez , Estados Unidos/epidemiologia , Adulto Jovem , Infecção por Zika virus/complicações , Infecção por Zika virus/epidemiologia
8.
Viruses ; 10(2)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443908

RESUMO

Alphaviruses are arthropod-borne viruses and are predominantly transmitted via mosquito vectors. This vector preference by alphaviruses raises the important question of the determinants that contribute to vector competence. There are several tissue barriers of the mosquito that the virus must overcome in order to establish a productive infection. Of importance are the midgut, basal lamina and the salivary glands. Infection of the salivary glands is crucial for virus transmission during the mosquito's subsequent bloodfeed. Other factors that may contribute to vector competence include the microflora and parasites present in the mosquito, environmental conditions, the molecular determinants of the virus to adapt to the vector, as well as the effect of co-infection with other viruses. Though mosquito innate immunity is a contributing factor to vector competence, it will not be discussed in this review. Detailed understanding of these factors will be instrumental in minimising transmission of alphaviral diseases.


Assuntos
Infecções por Alphavirus/transmissão , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Culicidae/virologia , Mosquitos Vetores/virologia , Animais , Coinfecção , Humanos , Mutação , RNA Viral
9.
Viruses ; 10(2)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462879

RESUMO

Arthritogenic alphavirus infections often result in debilitating musculoskeletal disorders that affect the joints, muscle, and bone. In order to evaluate the infection profile of primary human skeletal muscle and chondrocyte cells to Ross River virus (RRV) in vitro, cells were infected at a multiplicity of infection (MOI) of 1 over a period of two days. Viral titers were determined by plaque assay and cytokine expression by Bio-Plex® assays using the supernatants harvested. Gene expression studies were conducted using total RNA isolated from cells. Firstly, we show that RRV RNA is detected in chondrocytes from infected mice in vivo. Both human primary skeletal muscle and chondrocyte cells are able to support productive RRV infection in vitro. We also report the production of soluble host factors including the upregulation of heparanase (HPSE) and inflammatory host factors such as interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), RANTES (regulated on activation, normal T cell expressed and secreted), interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α), which are also present during clinical disease in humans. Our study is the first to demonstrate that human chondrocyte cells are permissive to RRV infection, support the production of infectious virus, and produce soluble factors including HPSE, which may contribute to joint degradation and the pathogenesis of disease.


Assuntos
Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Condrócitos/metabolismo , Condrócitos/virologia , Replicação Viral , Infecções por Alphavirus/genética , Animais , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Células Musculares/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA