Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Helicobacter ; 22(1)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27258354

RESUMO

BACKGROUND: Helicobacter pylori colonizes almost half of the human population worldwide. H. pylori strains are genetically diverse, and the specific genotypes are associated with various clinical manifestations including gastric adenocarcinoma, peptic ulcer disease (PUD), and nonulcer dyspepsia (NUD). However, our current knowledge of the H. pylori metabolism is limited. To understand the metabolic differences among H. pylori strains, we investigated four Malaysian H. pylori clinical strains, which had been previously sequenced, and a standard strain, H. pylori J99, at the phenotypic level. MATERIALS AND METHODS: The phenotypes of the H. pylori strains were profiled using the Biolog Phenotype Microarray system to corroborate genomic data. We initiated the analyses by predicting carbon and nitrogen metabolic pathways from the H. pylori genomic data from the KEGG database. Biolog PM aided the validation of the prediction and provided a more intensive analysis of the H. pylori phenomes. RESULTS: We have identified a core set of metabolic nutrient sources that was utilized by all strains tested and another set that was differentially utilized by only the local strains. Pentose sugars are the preferred carbon nutrients utilized by H. pylori. The amino acids l-aspartic acid, d-alanine, and l-asparagine serve as both carbon and nitrogen sources in the metabolism of the bacterium. CONCLUSION: The phenotypic profile based on this study provides a better understanding on the survival of H. pylori in its natural host. Our data serve as a foundation for future challenges in correlating interstrain metabolic differences in H. pylori.


Assuntos
Helicobacter pylori/metabolismo , Redes e Vias Metabólicas , Análise em Microsséries , Fenótipo , Carbono/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/classificação , Helicobacter pylori/isolamento & purificação , Humanos , Malásia , Nitrogênio/metabolismo
2.
Front Microbiol ; 7: 2015, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018334

RESUMO

Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.

3.
BMC Genomics ; 16: 424, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031894

RESUMO

BACKGROUND: The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome). RESULTS: The N4-methylcytosine and N6-methyladenine modifications detected at single-base resolution using SMRT technology revealed 17 methylated sequence motifs corresponding to one Type I and 16 Type II restriction-modification (R-M) systems. Previously unassigned methylation motifs were now assigned to their respective MTases-coding genes. Furthermore, one gene that appears to be inactive in the H. pylori UM032 genome during normal growth was characterized by cloning. CONCLUSION: Consistent with previously-studied H. pylori strains, we show that strain UM032 contains a relatively large number of R-M systems, including some MTase activities with novel specificities. Additional studies are underway to further elucidating the biological significance of the R-M systems in the physiology and pathogenesis of H. pylori.


Assuntos
Metilação de DNA , Genoma Bacteriano , Helicobacter pylori/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Enzimas de Restrição do DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Metiltransferases/metabolismo , Análise de Sequência de DNA , Interface Usuário-Computador
4.
PLoS One ; 9(7): e101481, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003707

RESUMO

BACKGROUND: Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment. METHODS AND FINDINGS: H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC). The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8%) and fluoroquinolones (6.8%). To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR) strains were found to be associated with higher minimum inhibitory concentration (MIC) than their single-drug resistant (SDR) counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance. CONCLUSION: Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi-drug resistance in H. pylori. The report serves a reminder that a strict antibiotic usage policy is needed in Malaysia and other developing countries (especially those where H. pylori prevalence remained high).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Claritromicina/farmacologia , Resistência a Múltiplos Medicamentos , Fluoroquinolonas/farmacologia , Genes Bacterianos , Variação Genética , Humanos , Malásia/epidemiologia , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Prevalência , RNA Ribossômico 23S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA