Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Genomics Inform ; 22(1): 6, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38907287

RESUMO

Here, we investigated that the heat shock protein 47 (HSP47) plays a crucial role in the progression of gastric cancer (GC). We analyzed HSP47 gene expression in GC cell lines and patient tissues. The HSP47 mRNA and protein expression levels were significantly higher in GC cell lines and tumor tissues compared to normal gastric mucosa. Using siRNA to silence the expression of HSP47 in GC cells resulted in a significant reduction in their proliferation, wound healing, migration, and invasion capacities. Additionally, we also showed that the mRNA expression of matrix metallopeptidase-7 (MMP-7), a metastasis-promoting gene, was significantly reduced in HSP47 siRNA-transfected GC cells. We confirmed that the HSP47 promoter region was methylated in the SNU-216 GC cell line expressing low levels of HSP47 and in most non-cancerous gastric tissues. It means that the expression of HSP47 is regulated by epigenetic regulatory mechanisms. These findings suggest that targeting HSP47, potentially through its promoter methylation, could be a useful new therapeutic strategy for treating GC.

3.
Hepatology ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38385945

RESUMO

BACKGROUND AND AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS: RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS: This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.

4.
Clin Mol Hepatol ; 30(2): 247-262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281815

RESUMO

BACKGROUND/AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression. METHODS: Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD. RESULTS: After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort. CONCLUSION: We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Algoritmos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Progressão da Doença
5.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239877

RESUMO

nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.


Assuntos
RNA Polimerase III , RNA não Traduzido , Humanos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Metilação de DNA , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Transcrição Gênica
6.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502191

RESUMO

In this study, an electrostatically driven vertical MEMS actuator was designed using a hollow square electrode. To attain vertical actuation, a hollow square-shaped electrode was designed on the glass substrate. The silicon proof mass, containing a step, was utilized to realize analogue actuation without pull-in. The vertical MEMS actuator was fabricated using the SiOG (Silicon on Glass) process and the total actuator size was 8.3 mm × 8.3 mm. The fabricated proof mass was freestanding due to eight serpentine springs with 30 µm width. The vertical movement of the MEMS actuator was successfully controlled electrostatically. The measured vertical movement was 5.6 µm for a voltage of 40 V, applied between the top silicon structure and the hollow square electrode. The results shown here confirm that the proposed MEMS actuator was able to control the vertical displacement using an applied voltage.


Assuntos
Silício , Eletrodos , Silício/química
7.
Small ; 18(29): e2202153, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35754305

RESUMO

Development of a reliable doping method for 2D materials is a key issue to adopt the materials in the future microelectronic circuits and to replace the silicon, keeping the Moore's law toward the sub-10 nm channel length. Especially hole doping is highly required, because most of the transition metal dichalcogenides (TMDC) among the 2D materials are electron-doped by sulfur vacancies in their atomic structures. Here, hole doping of a TMDC, tungsten disulfide (WS2 ) using the silicon substrate as the dopant medium is demonstrated. An ultralow-power current sourcing transistor or a gated WS2 pn diode is fabricated based on a charge plasma pn heterojunction formed between the WS2 thin-film and heavily doped bulk silicon. An ultralow switchable output current down to 0.01 nA µm-1 , an off-state current of ≈1 × 10-14 A µm-1 , a static power consumption range of 1 fW µm-1 -1 pW µm-1 , and an output current ratio of 103 at 0.1 V supply voltage are achieved. The charge plasma heterojunction allows a stable (less than 3% variation) output current regardless of the gate voltage once it is turned on.

8.
Mol Ther Oncolytics ; 24: 683-694, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284627

RESUMO

Elucidation of the interplay between viruses and host cells is crucial for taming viruses to benefit human health. Cancer therapy using adenovirus, called oncolytic virotherapy, is a promising treatment option but is not robust in all patients. In addition, inefficient replication of human adenovirus in mouse hampered the development of an in vivo model for preclinical evaluation of therapeutically engineered adenovirus. nc886 is a human non-coding RNA that suppresses Protein Kinase R (PKR), an antiviral protein. In this study, we have found that nc886 greatly promotes adenoviral gene expression and replication. Remarkably, the stimulatory effect of nc886 is not dependent on its function to inhibit PKR. Rather, nc886 facilitates the nuclear entry of adenovirus via modulating the kinesin pathway. nc886 is not conserved in mouse and, when xenogeneically expressed in mouse cells, promotes adenovirus replication. Our investigation has discovered a novel mechanism of how a host ncRNA plays a pro-adenoviral role. Given that nc886 expression is silenced in a subset of cancer cells, our study highlights that oncolytic virotherapy might be inefficient in those cells. Furthermore, our findings open future possibilities of harnessing nc886 to improve the efficacy of oncolytic adenovirus and to construct nc886-expressing transgenic mice as an animal model.

9.
Micromachines (Basel) ; 12(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34577697

RESUMO

In this study, a polyethyleneimine (PEI)-functionalized carbon nanotube (CNT) sensor was fabricated for carbon dioxide detection at room temperature. Uniform CNT thin films prepared using a filtration method were used as resistive networks. PEI, which contains amino groups, can effectively react with CO2 gas by forming carbamates at room temperatures. The morphology of the sensor was observed, and the properties were analyzed by scanning electron microscope (SEM), Raman spectroscopy, and fourier transform infrared (FT-IR) spectroscopy. When exposed to CO2 gas, the fabricated sensor exhibited better sensitivity than the pristine CNT sensor at room temperature. Both the repeatability and selectivity of the sensor were studied.

10.
Micromachines (Basel) ; 12(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442620

RESUMO

In this study, a micromachined chip in Otto configuration with multiple air-gaps (1.86 µm, 2.42 µm, 3.01 µm, 3.43 µm) was fabricated, and the resonance characteristics for each air-gap was measured with a 980 nm laser source. To verify the variability of the reflectance characteristics of the Otto configuration and its applicability to multiple gas detection, the air-gap between the prism and metal film was adjusted by using a commercial piezoactuator. We experimentally verified that the SPR characteristics of the Otto chip configuration have a dependence on the air-gap distance and wavelength of the incident light. When a light source having a wavelength of 977 nm is used, the minimum reflectance becomes 0.22 when the displacement of the piezoactuator is about 9.3 µm.

11.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670458

RESUMO

Interferons (IFNs) are a crucial component in the innate immune response. Especially the IFN-ß signaling operates in most cell types and plays a key role in the first line of defense upon pathogen intrusion. The induction of IFN-ß should be tightly controlled, because its hyperactivation can lead to tissue damage or autoimmune diseases. Activation of the IFN-ß promoter needs Interferon Regulatory Factor 3 (IRF3), together with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Activator Protein 1 (AP-1). Here we report that a human noncoding RNA, nc886, is a novel suppressor for the IFN-ß signaling and inflammation. Upon treatment with several pathogen-associated molecular patterns and viruses, nc886 suppresses the activation of IRF3 and also inhibits NF-κB and AP-1 via inhibiting Protein Kinase R (PKR). These events lead to decreased expression of IFN-ß and resultantly IFN-stimulated genes. nc886's role might be to restrict the IFN-ß signaling from hyperactivation. Since nc886 expression is regulated by epigenetic and environmental factors, nc886 might explain why innate immune responses to pathogens are variable depending on biological settings.


Assuntos
Regulação da Expressão Gênica/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , RNA não Traduzido/imunologia , Animais , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , RNA não Traduzido/genética , Transdução de Sinais/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Vírus/imunologia , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
12.
Cells ; 9(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225025

RESUMO

nc886 is a regulatory non-coding RNA (ncRNA) whose expression is frequently silenced in malignancies. In the case of esophageal squamous cell carcinoma (ESCC), nc886 silencing is associated with shorter survival of patients, suggesting nc886's tumor suppressor role in ESCC. However, this observation has not been complemented by an in-detail study about nc886's impact on gene expression and cellular phenotypes. Here we have shown that nc886 inhibits AKT, a key protein in a renowned pro-survival pathway in cancer. nc886-silenced cells (nc886- cells) have activated AKT and altered expression of cell cycle genes. nc886- cells tend to have lower expression of CDKN2A and CDKN2C, both of which are inhibitors for cyclin-dependent kinase (CDK), and higher expression of CDK4 than nc886-expressing cells. As a result, nc886- cells are hyperactive in the progression of the G1 to S cell cycle phase, proliferate faster, and are more sensitive to palbociclib, which is a cancer therapeutic drug that targets CDK4/6. Experimentally by nc886 expression and knockdown, we have determined the AKT target genes and cell cycle genes that are controlled by nc886 (nc886-associated gene sets). These gene sets, in combination with pathologic staging and nc886 expression levels, are a vastly superior predictor for the survival of 108 ESCC patients. In summary, our study has elucidated in ESCC how nc886 inhibits cell proliferation to explain its tumor suppressor role and identified gene sets that are of future clinical utility, by predicting patient survival and responsiveness to a therapeutic drug.


Assuntos
Ciclo Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA não Traduzido/genética , Transdução de Sinais , Sequência de Bases , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fase G1/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Prognóstico , RNA não Traduzido/metabolismo , Análise de Sobrevida
13.
Wiley Interdiscip Rev RNA ; 11(2): e1558, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31231984

RESUMO

Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Assuntos
Neoplasias/metabolismo , eIF-2 Quinase/metabolismo , Humanos , Microambiente Tumoral
14.
Proc Natl Acad Sci U S A ; 116(17): 8289-8294, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948645

RESUMO

DNA-reactive compounds are harnessed for cancer chemotherapy. Their genotoxic effects are considered to be the main mechanism for the cytotoxicity to date. Because this mechanism preferentially affects actively proliferating cells, it is postulated that the cytotoxicity is specific to cancer cells. Nonetheless, they do harm normal quiescent cells, suggesting that there are other cytotoxic mechanisms to be uncovered. By employing doxorubicin as a representative DNA-reactive compound, we have discovered a cytotoxic mechanism that involves a cellular noncoding RNA (ncRNA) nc886 and protein kinase R (PKR) that is a proapoptotic protein. nc886 is transcribed by RNA polymerase III (Pol III), binds to PKR, and prevents it from aberrant activation in most normal cells. We have shown here that doxorubicin evicts Pol III from DNA and, thereby, shuts down nc886 transcription. Consequently, the instantaneous depletion of nc886 provokes PKR and leads to apoptosis. In a short-pulse treatment of doxorubicin, these events are the main cause of cytotoxicity preceding the DNA damage response in a 3D culture system as well as the monolayer cultures. By identifying nc886 as a molecular signal for PKR to sense doxorubicin, we have provided an explanation for the conundrum why DNA-damaging drugs can be cytotoxic to quiescent cells that have the competent nc886/PKR pathway.


Assuntos
Apoptose/efeitos dos fármacos , DNA/metabolismo , MicroRNAs/metabolismo , RNA não Traduzido , Linhagem Celular , Doxorrubicina/farmacologia , Humanos , MicroRNAs/genética , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
15.
Nat Commun ; 9(1): 5458, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568190

RESUMO

In the original version of the Supplementary Information file associated with this Article, Supplementary Fig. 18 panel b was inadvertently replaced with a duplicate of panel a. The error has now been fixed and the corrected version of the Supplementary Information PDF is available to download from the HTML version of the Article.

16.
Nat Commun ; 9(1): 1166, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563500

RESUMO

Transforming growth factor-ß (TGF-ß) signaling and microRNAs (miRNAs) are important gene regulatory components in cancer. Usually in advanced malignant stages, TGF-ß signaling is elevated but global miRNA expression is suppressed. Such a gene expression signature is well illustrated in a fibrosis (or mesenchymal) subtype of ovarian cancer (OC) that is of poor prognosis. However, the interplay between the two pathways in the OC subtype has not yet been elucidated. nc886 is a recently identified non-coding RNA implicated in several malignancies. The high expression of nc886 is associated with poor prognosis in 285 OC patients. Herein, we find that in OC nc886 expression is induced by TGF-ß and that nc886 binds to Dicer to inhibit miRNA maturation. By preventing the miRNA pathway, nc886 emulates TGF-ß in gene expression patterns and potentiates cell adhesion, migration, invasion, and drug resistance. Here we report nc886 to be a molecular link between the TGF-ß and miRNA pathways.


Assuntos
Cistadenocarcinoma Seroso/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA não Traduzido/genética , Fator de Crescimento Transformador beta/genética , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Feminino , Humanos , MicroRNAs/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , RNA não Traduzido/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transdução de Sinais , Análise de Sobrevida , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
17.
Epigenomics ; 9(2): 171-187, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28112569

RESUMO

RNA polymerase III (Pol III) synthesizes a range of medium-sized noncoding RNAs (collectively 'Pol III genes') whose early established biological roles were so essential that they were considered 'housekeeping genes'. Besides these fundamental functions, diverse unconventional roles of mammalian Pol III genes have recently been recognized and their expression must be exquisitely controlled. In this review, we summarize the epigenetic regulation of Pol III genes by chromatin structure, histone modification and CpG DNA methylation. We also recapitulate the association between dysregulation of Pol III genes and diseases such as cancer and neurological disorders. Additionally, we will discuss why in-depth molecular studies of Pol III genes have not been attempted and how nc886, a Pol III gene, may resolve this issue.


Assuntos
Epigênese Genética , RNA Polimerase III/genética , RNA não Traduzido/genética , Animais , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Transcrição Gênica
18.
Oncotarget ; 7(43): 69450-69465, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27626312

RESUMO

The neuregulin 1 (NRG1) fusion is a recently identified novel driver oncogene in invasive mucinous adenocarcinoma of the lung (IMA). After identification of a case of SLC3A2-NRG1 in a patient with IMA, we verified this fusion gene in a cohort of 59 patients with IMA. Targeted cancer panel sequencing and RT-PCR identified the possible coexistence of other driver oncogenes. Among 59 IMAs, we found 16 NRG1 fusions (13 SLC3A2-NRG1 and 3 CD74-NRG1). Of 16 patients with NRG1 fusions, concurrent KRAS codon 12 mutations were found in 10 cases. We also found concurrent NRAS Q61L mutation and EML4-ALK fusion in additional two cases with NRG1 fusions. When comparing overall survival (OS) according to the presence of NRG1 fusions showed that patients harboring NRG1 fusions had significantly inferior OS than those without NRG1 fusions (hazard ratio = 0.286; 95% confidence interval, .094 to .865). Ectopic expression of the SLC3A2-NRG1 fusion in lung cancer cells increased cell migration, proliferation and tumor growth in vitro and in xenograft models, suggesting oncogenic function for the fusion protein. We found that the SLC3A2-NRG1 fusion promoted ERBB2-ERBB3 phosphorylation and heteroduplex formation and activated the downstream PI3K/AKT/mTOR pathway through paracrine signaling. These findings suggested that the SLC3A2-NRG1 fusion was a driver in IMA with an important prognostic impact. SLC3A2-NRG1 should be considered a therapeutic target for patients with IMA.


Assuntos
Adenocarcinoma Mucinoso/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Neoplasias Pulmonares/genética , Neuregulina-1/genética , Proteínas de Fusão Oncogênica/genética , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Coortes , Intervalo Livre de Doença , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação , Transdução de Sinais , Transplante Heterólogo
19.
Oncotarget ; 7(46): 75000-75012, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27612419

RESUMO

nc886 is a recently identified cellular non-coding RNA and its depletion leads to acute cell death via PKR (Protein Kinase RNA-activated) activation. nc886 expression is increased in some malignancies, but silenced in others. However, the precise role of nc886/PKR is controversial: is it a tumor suppressor or an oncogene? In this study, we have clarified the role of nc886 in thyroid cancer by sequentially generating PKR knockout (KO) and PKR/nc886 double KO cell lines from Nthy-ori 3-1, a partially transformed thyroid cell line. Compared to the wildtype, PKR KO alone does not exhibit any significant phenotypic changes. However, nc886 KO cells are less proliferative, migratory, and invasive than their parental PKR KO cells. Importantly, the requirement of nc886 in tumor phenotypes is totally independent of PKR. In our microarray data, nc886 KO suppresses some genes whose elevated expression is associated with poor survival confirmed by data from total of 505 thyroid cancer patients in the Caner Genome Atlas project. Also, the nc886 expression level tends to be elevated and in more aggressively metastatic tumor specimens from thyroid cancer patients. In summary, we have discovered nc886's tumor-promoting role in thyroid cancer which has been concealed by the PKR-mediated acute cell death.


Assuntos
Oncogenes , RNA não Traduzido/genética , Neoplasias da Glândula Tireoide/genética , eIF-2 Quinase/genética , Adulto , Morte Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Ontologia Genética , Inativação Gênica , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias da Glândula Tireoide/patologia , Transcriptoma
20.
Oncotarget ; 7(21): 31204-14, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27144430

RESUMO

The insulin-like growth factor (IGF) axis plays a crucial role in proliferation, differentiation, migration, angiogenesis, and apoptosis. The present study evaluated the associations between IGF axis single-nucleotide polymorphisms (SNPs) and clinical outcomes in advanced gastric cancer (AGC) patients treated with oxaliplatin, 5-fluorouracil, and leucovorin (FOLFOX). A total of 190 patients undergoing FOLFOX chemotherapy for AGC were considered eligible for this study. Forty-four SNPs of 10 IGF axis genes were genotyped. Levels of serum IGF1 were measured using enzyme-linked immunoassays. SNPs of the IGF1R (rs12423791), and IGF1 (rs2162679, rs5742612, rs35767) genes were significantly associated with tumor response to FOLFOX. SNPs of rs4619 and rs17847203 were significantly associated with PFS (hazard ratio [HR] 0.575, 95% CI 0.385-0.858, P = 0.007; and HR 2.530, 95% CI 1.289-4.966, P = 0.007; respectively). SNPs of rs2872060 were significantly associated with OS-OS was shorter in patients carrying the TT variant than in those with the GG/GT genotypes (HR, 1.708, 95% CI 1.024-2.850, P = 0.040). The GT genotype of rs12847203 was also identified as an independent prognostic factor (HR 2.087, 95% CI 1.070-4.069, P = 0.031). These results suggest that IGF axis-pathway SNPs could be used as prognostic biomarkers of the outcome of FOLFOX chemotherapy in AGC patients. This information may facilitate identification of population subgroups that could benefit from IGF1R-targeted agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator de Crescimento Insulin-Like I/genética , Polimorfismo de Nucleotídeo Único , Receptores de Somatomedina/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Adulto , Idoso , Feminino , Fluoruracila/administração & dosagem , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Estimativa de Kaplan-Meier , Leucovorina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Receptor IGF Tipo 1 , Neoplasias Gástricas/sangue , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA