Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013630

RESUMO

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cancer cell death with minimal damage to normal cells; however, some cancer cells are resistant to TRAIL. TRAIL resistance may be overcome by agonistic antibodies to TRAIL receptors. In this study, we report the toxic effects of a novel recombinant agonistic human anti-TRAIL receptor 1 (DR4) monoclonal antibody Fab fragment, DR4-4, on various TRAIL-resistant and -sensitive cancer cell lines. The mechanisms of DR4-4 Fab-induced cell death in a human T cell leukemia cell line (Jurkat) were investigated using cell viability testing, immunoblotting, immunoassays, flow cytometry, and morphological observation. DR4-4 Fab-induced caspase-independent necrosis was observed to occur in Jurkat cells in association with p38 mitogen-activated protein kinase activation, cellular FLICE (FADD-like IL-1ß-converting enzyme)-inhibitory protein degradation, decreased mitochondrial membrane potential, and increased mitochondrial reactive oxygen species production. Increased cytotoxic effects of DR4-4 Fab were observed in combination with TRAIL or γ-irradiation. Our results indicate that the novel DR4-4 Fab might overcome TRAIL-resistance and induce death in leukemia cells via cellular mechanisms different from those activated by TRAIL. DR4-4 Fab may have application as a potential therapeutic antibody fragment in single or combination therapy for cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sequência de Aminoácidos , Antineoplásicos Imunológicos/química , Apoptose/efeitos dos fármacos , Biomarcadores , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fragmentos Fab das Imunoglobulinas/química , Ligação Proteica
2.
Arch Pharm Res ; 41(9): 867-874, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30136248

RESUMO

siRNA therapeutics allows precise regulation of disease specific gene expression to treat various diseases. Although gene silencing approaches using siRNA therapeutics shows some promising results in the treatment of gene-related diseases, the practical applications has been limited by problems such as inefficient in vivo delivery to target cells and nonspecific immune responses after systemic or local administration. To overcome these issues, various in vivo delivery platforms have been introduced. Here we provide an overview for three different platform technologies for the in vivo delivery of therapeutic siRNAs (siRNA-GalNAc conjugate, SAMiRNA technology, and LNP-based delivery method) and their applications in the treatment of various diseases. In addition, a brief introduction to some rare diseases and mechanisms of siRNA therapeutics-mediated treatment is described.


Assuntos
Ensaios Clínicos como Assunto/métodos , Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética
3.
Nanomedicine ; 11(1): 99-108, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25109662

RESUMO

Respiratory syncytial virus (RSV) is an important human pathogen. Expression of virus structural proteins produces self-assembled virus-like nanoparticles (VLP). We investigated immune phenotypes after RSV challenge of immunized mice with VLP containing RSV F and G glycoproteins mixed with F-DNA (FdFG VLP). In contrast to formalin-inactivated RSV (FI-RSV) causing vaccination-associated eosinophilia, FdFG VLP immunization induced low bronchoalveolar cellularity, higher ratios of CD11c(+) versus CD11b(+) phenotypic cells and CD8(+) T versus CD4(+) T cells secreting interferon (IFN)-γ, T helper type-1 immune responses, and no sign of eosinophilia upon RSV challenge. Furthermore, RSV neutralizing activity, lung viral clearance, and histology results suggest that FdFG VLP can be comparable to live RSV in conferring protection against RSV and in preventing RSV disease. This study provides evidence that a combination of recombinant RSV VLP and plasmid DNA may have a potential anti-RSV prophylactic vaccine inducing balanced innate and adaptive immune responses.


Assuntos
Vacinas Anticâncer/química , Nanopartículas/química , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas de DNA/química , Animais , Líquido da Lavagem Broncoalveolar , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Ensaio de Imunoadsorção Enzimática , Eosinofilia/virologia , Feminino , Glicoproteínas/química , Imunização , Imunoglobulina G/química , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Nanotecnologia , Fenótipo , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios
4.
Vaccine ; 32(44): 5866-74, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25173478

RESUMO

Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos , Baculoviridae , Citocinas/imunologia , Imunoglobulina G/sangue , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/imunologia , Células Th2/imunologia , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Carga Viral
5.
Mol Biol Rep ; 39(6): 6781-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22302392

RESUMO

Free fatty acid-induced pancreatic ß-cell dysfunction plays a key role in the pathogenesis of type 2 diabetes. We conducted gene expression microarray analysis to comprehensively investigate the transcription machinery of palmitate-regulated genes in pancreatic ß-cells in vitro. In particular, mouse pancreatic ßTC3 cells were treated with palmitate in the presence or absence of cycloheximide (CHX), which blocks protein synthesis and thereby allows us to distinguish immediate early genes (IEGs) from their target genes. The microarray experiments identified 34 palmitate-regulated IEGs and 74 palmitate-regulated target genes. In silico promoter analysis revealed that transcription factor binding sites for NF-κB were over-represented, regulating approximately one-third of the palmitate-regulated target genes. In cells treated with CHX, nfkb1 showed an up-regulation by palmitate, suggesting that NF-κB could be an IEG. Functional enrichment analysis of 27 palmitate-regulated genes with NF-κB binding sites showed an over-representation of genes involved in immune response, inflammatory response, defense response, taxis, regulation of cell proliferation, and regulation of cell death pathways. Electrophoretic mobility shift assay showed that palmitate stimulates NF-κB activity both in the presence and absence of CHX. In conclusion, by identifying IEGs and target genes, the present study depicted a comprehensive view of transcription machinery underlying palmitate-induced inflammation and cell proliferation/death in pancreatic ß-cells and our data demonstrated the central role of NF-κB.


Assuntos
Genes Precoces , Células Secretoras de Insulina/metabolismo , NF-kappa B/fisiologia , Palmitatos/farmacologia , Animais , Sítios de Ligação , Células Cultivadas , Cicloeximida/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas
6.
BMB Rep ; 44(8): 529-34, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21871177

RESUMO

Ribosomal protein S3 (rpS3) is a multifunctional protein involved in translation, DNA repair, and apoptosis. The relationship between rpS3 and cyclin-dependent kinases (Cdks) involved in cell cycle regulation is not yet known. Here, we show that rpS3 is phosphorylated by Cdk1 in G2/M phase. Co-immunoprecipitation and GST pull-down assays revealed that Cdk1 interacted with rpS3. An in vitro kinase assay showed that Cdk1 phosphorylated rpS3 protein. Phosphorylation of rpS3 increased in nocodazole-arrested mitotic cells; however, treatment with Cdk1 inhibitor or Cdk1 siRNA significantly attenuated this phosphorylation event. The phosphorylation of a mutant form of rpS3, T221A, was significantly reduced compared with wild-type rpS3. Decreased phosphorylation and nuclear accumulation of T221A was much more pronounced in G2/M phase. These results suggest that the phosphorylation of rpS3 by Cdk1 occurs at Thr221 during G2/M phase and, moreover, that this event is important for nuclear accumulation of rpS3.


Assuntos
Divisão Celular , Ciclina B/metabolismo , Fase G2 , Proteínas Ribossômicas/metabolismo , Proteína Quinase CDC2 , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes , Células HEK293 , Humanos , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica
7.
PLoS One ; 6(7): e22116, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21765942

RESUMO

Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are associated with an increased risk. To examine functional consequences of these haplogroups without being confounded by the heterogeneous nuclear genomic backgrounds of different subjects, we constructed transmitochondrial cytoplasmic hybrid (cybrid) cells harboring each of the three haplogroups (N9a, D5, and F) in a background of a shared nuclear genome. We compared the functional consequences of the three haplogroups using cell-based assays and gene expression microarrays. Cell-based assays did not detect differences in mitochondrial functions among the haplogroups in terms of ATP generation, reactive oxygen species production, mitochondrial membrane potential, and cellular dehydrogenase activity. However, differential expression and clustering analyses of microarray data revealed that the three haplogroups exhibit a distinctive nuclear gene expression pattern that correlates with their susceptibility to T2DM. Pathway analysis of microarray data identified several differentially regulated metabolic pathways. Notably, compared to the T2DM-resistant haplogroup N9a, the T2DM-susceptible haplogroup F showed down-regulation of oxidative phosphorylation and up-regulation of glycolysis. These results suggest that variations in mtDNA can affect the expression of nuclear genes regulating mitochondrial functions or cellular energetics. Given that impaired mitochondrial function caused by T2DM-associated mtDNA haplogroups is compensated by the nuclear genome, we speculate that defective nuclear compensation, under certain circumstances, might lead to the development of T2DM.


Assuntos
DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Haplótipos/genética , Células Híbridas/metabolismo , Mitocôndrias/genética , Análise por Conglomerados , Humanos , Redes e Vias Metabólicas/genética , Fosforilação Oxidativa
8.
BMB Rep ; 44(5): 352-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21615992

RESUMO

The effect of human MutY homolog (hMYH) on the activation of checkpoint proteins in response to hydroxyurea (HU) and ultraviolet (UV) treatment was investigated in hMYH-disrupted HEK293 cells. hMYH-disrupted cells decreased the phosphorylation of Chk1 upon HU or UV treatment and increased the phosphorylation of Cdk2 and the amount of Cdc25A, but not Cdc25C. In siMYH-transfected cells, the increased rate of phosphorylated Chk1 upon HU or UV treatment was lower than that in siGFP-transfected cells, meaning that hMYH was involved in the activation mechanism of Chk1 upon DNA damage. The phosphorylation of ataxia telangiectasia and Rad3- related protein (ATR) upon HU or UV treatment was decreased in hMYH-disrupted HEK293 and HaCaT cells. Co-immunoprecipitation experiments showed that hMYH was immunoprecipitated by anti-ATR. These results suggest that hMYH may interact with ATR and function as a mediator of Chk1 phosphorylation in response to DNA damage.


Assuntos
DNA Glicosilases/metabolismo , Hidroxiureia/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Proteínas Quinases/metabolismo , Raios Ultravioleta , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/genética , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
Mol Imaging Biol ; 12(5): 468-78, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20373040

RESUMO

PURPOSE: We developed a bimolecular fluorescence complementation (BiFC) strategy using Dronpa, a new fluorescent protein with reversible photoswitching activity and fast responsibility to light, to monitor protein-protein interactions in cells. PROCEDURES: Dronpa was split at residue Glu164 in order to generate two Dronpa fragments [Dronpa N-terminal: DN (Met1-Glu164), Dronpa C-terminal: DC (Gly165-Lys224)]. DN or DC was separately fused with C terminus of hHus1 or N terminus of hRad1. Flexible linker [(GGGGS)×2] was introduced to enhance Dronpa complementation by hHus1-hRad1 interaction. Furthermore, we developed expression vectors to visualize the interaction between hMYH and hHus1. Gene fragments corresponding to the coding regions of hMYH and hHus1 were N-terminally or C-terminally fused with DN and DC coding region. RESULTS: Complemented Dronpa fluorescence was only observed in HEK293 cells cotransfected with hHus1-LDN and DCL-hRad1 expression vectors, but not with hHus1-LDN or DCL-hRad1 expression vector alone. Western blot analysis of immunoprecipitated samples using anti-c-myc or anti-flag showed that DN-fused hHus1 interacted with DC-fused hRad1. Complemented Dronpa fluorescence was also observed in cells cotransfected with hMYH-LDN and DCL-hHus1 expression vectors or hMYH-LDN and hHus1-LDC expression vectors. Furthermore, complemented Dronpa, induced by the interaction between hMYH-LDN and DCL-hHus1, showed almost identical photoswitching activity as that of native Dronpa. CONCLUSION: These results demonstrate that BiFC using Dronpa can be successfully used to investigate protein-protein interaction in live cells. Furthermore, the fact that complemented Dronpa has a reversible photoswitching activity suggests that it can be used as a tool for tracking protein-protein interaction.


Assuntos
Proteínas/metabolismo , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Fluorescência , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Ligação Proteica , Proteínas/química , Homologia de Sequência de Aminoácidos
10.
DNA Repair (Amst) ; 8(10): 1190-200, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19615952

RESUMO

Rad9-Rad1-Hus1 (9-1-1) is a checkpoint protein complex playing roles in DNA damage sensing, cell cycle arrest, DNA repair or apoptosis. Human 8-oxoguanine DNA glycosylase (hOGG1) is the major DNA glycosylase responsible for repairing a specific aberrantly oxidized nucleotide, 7,8-dihydro-8-oxoguanine (8-oxoG). In this study, we identified a novel interaction between hOGG1 and human 9-1-1, and investigated the functional consequences of this interaction. Co-immunoprecipitation assays using transiently transfected HEK293 cells demonstrated an interaction between hOGG1 and the 9-1-1 proteins. Subsequently, GST pull-down assays using bacterially expressed and purified hOGG1-His and GST-fused 9-1-1 subunits (GST-hRad9, GST-hRad1, and GST-hHus1) demonstrated that hOGG1 interacted directly with the individual subunits of the human 9-1-1 complex. In vitro excision assay, which employed a DNA duplex containing an 8-oxoG/C mismatch, showed that hRad9, hRad1, and hHus1 enhanced the 8-oxoG excision and beta-elimination activities of hOGG1. In addition, the presence of hRad9, hRad1, and hHus1 enhanced the formation of covalently cross-linked hOGG1-8-oxoG/C duplex complexes, as determined by a trapping assay using NaBH(4). A trimeric human 9-1-1 complex was purified from Escherichia coli cell transformed with hRad9, His-fused hRad1, or His-fused hHus1 expressing vectors. It also showed the similar activity to enhance in vitro hOGG1 glycosylase activity, compared with individual human 9-1-1 subunits. Detection of 8-oxoG in HEK293 cells using flow cytometric and spectrofluorometric analysis revealed that over-expression of hOGG1 or human 9-1-1 reduced the formation of 8-oxoG residues following the H(2)O(2) treatment. The highest 8-oxoG reduction was observed in HEK293 cells over-expressing hOGG1 and all the three subunits of human 9-1-1. These indicate that individual human 9-1-1 subunits and human 9-1-1 complex showed almost the same abilities to enhance the in vitro 8-oxoG excision activity of hOGG1, but that the greatest effect to remove 8-oxoG residues in H(2)O(2)-treated cells was derived from the 9-1-1 complex as a whole.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Glicosilases/metabolismo , Reparo do DNA , Exonucleases/metabolismo , Sequência de Bases , Biocatálise , Proteínas de Ciclo Celular/química , Linhagem Celular , DNA/genética , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Exonucleases/química , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico
11.
Oncol Rep ; 18(2): 513-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17611678

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine having potent cytotoxic activity specifically to tumor cells. Agonistic antibodies against TRAIL receptors are currently being explored as anti-cancer therapeutics. Here, we report studies on JKTR-18, a monovalent human monoclonal antibody Fab selected against human recombinant TRAIL receptor 2 (DR5) by phage display technology. It induced cell death in Jurkat and HL60 leukemia cell lines without the need for secondary crosslinkers in vitro. It did not compete with soluble TRAIL (sTRAIL) for binding to DR5, and its combination with sTRAIL resulted in greater cell death than either agent alone. The cell death induced by JKTR-18 included a caspase-independent mechanism. This is the first report of a monovalent antibody fragment against TRAIL receptor that can induce tumor cell death in the absence of a crosslinker.


Assuntos
Anticorpos Monoclonais/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Clorometilcetonas de Aminoácidos/farmacologia , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Inibidores de Caspase , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células HL-60 , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Células Jurkat , Leucemia/metabolismo , Leucemia/patologia , Dados de Sequência Molecular , Ligação Proteica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA