Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 139, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752138

RESUMO

Flagellin, the TLR5 agonist, shows potent adjuvant activities in diverse vaccines and immunotherapies. Vibrio vulnificus flagellin B expressed in eukaryotic cells (eFlaB) could not stimulate TLR5 signaling. Enzymatic deglycosylation restored eFlaB's TLR5 stimulating functionality, suggesting that glycosylation interferes with eFlaB binding to TLR5. Site-directed mutagenesis of N-glycosylation residues restored TLR5 stimulation and adjuvanticity. Collectively, deglycosylated eFlaB may provide a built-in adjuvant platform for eukaryotic-expressed antigens and nucleic acid vaccines.

2.
NPJ Vaccines ; 6(1): 116, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518537

RESUMO

Flagellin, a protein-based Toll-like receptor agonist, is a versatile adjuvant applicable to wide spectrum of vaccines and immunotherapies. Given reiterated treatments of immunogenic biopharmaceuticals should lead to antibody responses precluding repeated administration, the development of flagellin not inducing specific antibodies would greatly expand the chances of clinical applications. Here we computationally identified immunogenic regions in Vibrio vulnificus flagellin B and deimmunized by simply removing a B cell epitope region. The recombinant deimmunized FlaB (dFlaB) maintains stable TLR5-stimulating activity. Multiple immunization of dFlaB does not induce FlaB-specific B cell responses in mice. Intranasally co-administered dFlaB with influenza vaccine enhanced strong Ag-specific immune responses in both systemic and mucosal compartments devoid of FlaB-specific Ab production. Notably, dFlaB showed better protective immune responses against lethal viral challenge compared with wild type FlaB. The deimmunizing B cell epitope deletion did not compromise stability and adjuvanticity, while suppressing unwanted antibody responses that may negatively affected vaccine antigen-directed immune responses in repeated vaccinations. We explain the underlying mechanism of deimmunization by employing molecular dynamics analysis.

3.
Mucosal Immunol ; 12(2): 565-579, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30487648

RESUMO

Periodontitis is associated with a dysbiotic shift in the oral microbiome. Vaccine approaches to prevent microbial shifts from healthy to diseased state in oral biofilms would provide a fundamental therapeutic strategy against periodontitis. Since dental plaque formation is a polymicrobial and multilayered process, vaccines targeting single bacterial species would have limited efficacy in clinical applications. In this study, we developed a divalent mucosal vaccine consisting of a mixture of FlaB-tFomA and Hgp44-FlaB fusion proteins targeting virulence factors of inflammophilic bacteria Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. Introduction of peptide linkers between FlaB and antigen improved the stability and immunogenicity of engineered vaccine antigens. The intranasal immunization of divalent vaccine induced protective immune responses inhibiting alveolar bone loss elicited by F. nucleatum and P. gingivalis infection. The built-in flagellin adjuvant fused to protective antigens enhanced antigen-specific antibody responses and class switch recombination. The divalent vaccine antisera recognized natural forms of surface antigens and reacted with diverse clinical isolates of Fusobacterium subspecies and P. gingivalis. The antisera inhibited F. nucleatum-mediated biofilm formation, co-aggregation of P. gingivalis and Treponema denticola, and P. gingivalis-host cell interactions. Taken together, the built-in adjuvant-engineered mucosal vaccine provides a technological platform for multivalent periodontitis vaccines targeting dysbiotic microbiome.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Bacteroidaceae/imunologia , Disbiose/imunologia , Flagelina/imunologia , Infecções por Fusobacterium/imunologia , Fusobacterium nucleatum/fisiologia , Periodontite/imunologia , Porphyromonas gingivalis/fisiologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/genética , Feminino , Flagelina/genética , Humanos , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas , Fatores de Virulência/genética
4.
Hum Vaccin Immunother ; 13(12): 2794-2803, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28604268

RESUMO

Chronic periodontitis is caused by interactions between the oral polymicrobial community and host factors. Periodontal diseases are associated with dysbiotic shift in oral microbiota. Vaccination against periodontopathic bacteria could be a fundamental therapeutic to modulate polymicrobial biofilms. Because oral cavity is the site of periodontopathic bacterial colonization, mucosal vaccines should provide better protection than vaccines administered systemically. We previously reported that bacterial flagellin is an excellent mucosal adjuvant. In this study, we investigated whether mucosal immunization with a flagellin-adjuvanted polypeptide vaccine induces protective immune responses using a Porphyromonas gingivalis infection model. We used the Hgp44 domain polypeptide of Arg-gingipain A (RgpA) as a mucosal antigen. Intranasal (IN) immunization induced a significantly higher Hgp44-specific IgG titer in the serum of mice than sublingual (SL) administration. The co-administration of flagellin potentiated serum IgG responses for both the IN and SL vaccinations. On the other hand, the anti-Hgp44-specific IgA titer in the saliva was comparable between IN and SL vaccinations, suggesting SL administration as more compliant vaccination route for periodontal vaccines. The co-administration of flagellin significantly potentiated the secretory IgA response in saliva also. Furthermore, mice administered a mixture of Hgp44 and flagellin via the IN and SL routes exhibited significant reductions in alveolar bone loss induced by live P. gingivalis infections. An intranasally administered Hgp44-flagellin fusion protein induced a comparable level of Hgp44-specific antibody responses to the mixture of Hgp44 and flagellin. Overall, a flagellin-adjuvanted Hgp44 antigen would serve an important component for a multivalent mucosal vaccine against polymicrobial periodontitis.


Assuntos
Adesinas Bacterianas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , Infecções por Bacteroidaceae/prevenção & controle , Cisteína Endopeptidases/imunologia , Flagelina/administração & dosagem , Doenças Periodontais/prevenção & controle , Porphyromonas gingivalis/imunologia , Administração através da Mucosa , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Infecções por Bacteroidaceae/complicações , Modelos Animais de Doenças , Feminino , Cisteína Endopeptidases Gingipaínas , Imunoglobulina A/análise , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Doenças Periodontais/patologia , Saliva/imunologia , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
5.
Oncoimmunology ; 5(2): e1081328, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27057462

RESUMO

Cervical cancer is a high-incidence female cancer most commonly caused by human papilloma virus (HPV) infection of the genital mucosa. Immunotherapy targeting HPV-derived tumor antigens (TAs) has been widely studied in animal models and in patients. Because the female genital tract is a portal for the entry of HPV and a highly compartmentalized system, the development of topical vaginal immunotherapy in an orthotopic cancer model would provide an ideal therapeutic. Thus, we examined whether flagellin, a potent mucosal immunomodulator, could be used as an adjuvant for a topical therapeutic vaccine for female genital cancer. Intravaginal (IVAG) co-administration of the E6/E7 peptides with flagellin resulted in tumor suppression and long-term survival of tumor-bearing mice. In contrast to IVAG vaccination, intranasal (IN) or subcutaneous (SC) immunization did not induce significant tumor suppression in the same model. The vaginal adjuvant effect of the flagellin was completely abolished in Toll-like receptor-5 (TLR5) knock-out mice. IVAG immunization with the E6/E7 peptides plus flagellin induced the accumulation of CD4+ and CD8+ cells and the expression of T cell activation-related genes in the draining genital lymph nodes (gLNs). The co-administered flagellin elicited antigen-specific IFNγ production in the gLNs and spleen. The intravaginally administered flagellin was found in association with CD11c+ cells in the gLNs. Moreover, after immunization with a flagellin and the E6/E7 peptides, the TLR5 expression in gLN cells was significantly upregulated. These results suggest that flagellin serves as a potent vaginal adjuvant for a therapeutic peptide cancer vaccine through the activation of TLR5 signaling.

6.
Infect Immun ; 75(6): 2795-801, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17371864

RESUMO

We have suggested an important role of the pyrH gene during the infectious process of Vibrio vulnificus. Previously, we have identified 12 genes expressed preferentially during human infections by using in vivo-induced antigen technology. Among the in vivo-expressed genes, pyrH encodes UMP kinase catalyzing UMP phosphorylation. Introduction of a deletion mutation to the pyrH gene was lethal to V. vulnificus, and an insertional mutant showed a high frequency of curing. We constructed a site-directed mutant strain (R62H/D77N) on Arg-62 and Asp-77, both predicted to be involved in UMP binding, and characterized the R62H/D77N strain compared with the previously reported insertional mutant. We further investigated the essential role of the pyrH gene in the establishment of infection using the R62H/D77N strain. Cytotoxicity was decreased in the R62H/D77N strain, and the defect was restored by an in trans complementation. The intraperitoneal 50% lethal dose of the R62H/D77N strain increased by 26- and 238,000-fold in normal and iron-overloaded mice, respectively. The growth of the R62H/D77N strain in 50% HeLa cell lysate, 100% human ascitic fluid, and 50% human serum was significantly retarded compared to that of the isogenic wild-type strain. The R62H/D77N mutant also had a critical defect in the ability to survive and replicate even in iron-overloaded mice. These results demonstrate that pyrH is essential for the in vivo survival and growth of V. vulnificus and should be an attractive new target for the development of antibacterial drugs and replication-controllable live attenuated vaccines.


Assuntos
Proteínas de Escherichia coli/fisiologia , Genes Supressores/fisiologia , Transferases/fisiologia , Vibrioses/microbiologia , Vibrio vulnificus/fisiologia , Animais , Antígenos de Bactérias/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Transferases/metabolismo , Vibrio vulnificus/genética , Vibrio vulnificus/imunologia , Vibrio vulnificus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA