Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11554-11567, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885439

RESUMO

Understanding of nitrous acid (HONO) production is crucial to photochemical studies, especially in polluted environments like eastern China. In-situ measurements of gaseous and particulate compositions were conducted at a rural coastal site during the 2018 spring Ozone Photochemistry and Export from China Experiment (OPECE). This data set was applied to investigate the recycling of reactive nitrogen through daytime heterogeneous HONO production. Although HONO levels increase during agricultural burning, analysis of the observation data does not indicate more efficient HONO production by agricultural burning aerosols than other anthropogenic aerosols. Box and 1-D modeling analyses reveal the intrinsic relationships between nitrogen dioxide (NO2), particulate nitrate (pNO3), and nitric acid (HNO3), resulting in comparable agreement between observed and simulated HONO concentrations with any one of the three heterogeneous HONO production mechanisms, photosensitized NO2 conversion on aerosols, photolysis of pNO3, and conversion from HNO3. This finding underscores the uncertainties in the mechanistic understanding and quantitative parametrizations of daytime heterogeneous HONO production pathways. Furthermore, the implications for reactive nitrogen recycling, ozone (O3) production, and O3 control strategies vary greatly depending on the HONO production mechanism. On a regional scale, the conversion of HONO from pNO3 can drastically enhance O3 production, while the conversion from NO2 can reduce O3 sensitivity to NOx changes in polluted eastern China.


Assuntos
Ácido Nitroso , Ozônio , China , Nitrogênio , Poluentes Atmosféricos , Aerossóis , Dióxido de Nitrogênio
2.
Hypertens Res ; 46(4): 922-931, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781979

RESUMO

Cuffless wearable devices are currently being developed for long-term monitoring of blood pressure (BP) in patients with hypertension and in apparently healthy people. This study evaluated the feasibility and measurement stability of smartwatch-based cuffless BP monitoring in real-world conditions. Users of the first smartwatch-based cuffless BP monitor approved in Korea (Samsung Galaxy Watch) were invited to upload their data from using the device for 4 weeks post calibration. A total of 760 participants (mean age 43.7 ± 11.9, 80.3% men) provided 35,797 BP readings (average monitoring 22 ± 4 days [SD]; average readings 47 ± 42 per participant [median 36]). Each participant obtained 1.5 ± 1.3 readings/day and 19.7% of the participants obtained measurements every day. BP showed considerable variability, mainly depending on the day and time of the measurement. There was a trend towards higher BP levels on Mondays than on other days of the week and on workdays than in weekends. BP readings taken between 00:00 and 04:00 tended to be the lowest, whereas those between 12:00 and 16:00 the highest. The average pre-post calibration error for systolic BP (difference in 7-day BP before and after calibration), was 6.8 ± 5.6 mmHg, and was increased with higher systolic BP levels before calibration. Smartwatch-based cuffless BP monitoring is feasible for out-of-office monitoring in the real-world setting. The stability of BP measurement post calibration and the standardization and optimal time interval for recalibration need further investigation.


Assuntos
Determinação da Pressão Arterial , Hipertensão , Masculino , Humanos , Feminino , Pressão Sanguínea/fisiologia , Estudos de Viabilidade , Hipertensão/diagnóstico , Monitores de Pressão Arterial
3.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878847

RESUMO

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

4.
Environ Sci Technol ; 55(23): 15646-15657, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34817984

RESUMO

We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g., CO) to provide relative metrics for the plume width (wi/wCO) and center (bi/wCO). To validate GOMECH, we investigate OH and NO3 oxidation processes in smoke plumes sampled during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality, a 2019 wildfire smoke study). An analysis of 430 crosswind transects demonstrates that nitrous acid (HONO), a primary source of OH, is narrower than CO (wHONO/wCO = 0.73-0.84 ± 0.01) and maleic anhydride (an OH oxidation product) is enhanced on plume edges (wmaleicanhydride/wCO = 1.06-1.12 ± 0.01). By contrast, NO3 production [P(NO3)] occurs mainly at the plume center (wP(NO3)/wCO = 0.91-1.00 ± 0.01). Phenolic emissions, highly reactive to OH and NO3, are narrower than CO (wphenol/wCO = 0.96 ± 0.03, wcatechol/wCO = 0.91 ± 0.01, and wmethylcatechol/wCO = 0.84 ± 0.01), suggesting that plume edge phenolic losses are the greatest. Yet, nitrophenolic aerosol, their oxidation product, is the greatest at the plume center (wnitrophenolicaerosol/wCO = 0.95 ± 0.02). In a large plume case study, GOMECH suggests that nitrocatechol aerosol is most associated with P(NO3). Last, we corroborate GOMECH with a large eddy simulation model which suggests most (55%) of nitrocatechol is produced through NO3 in our case study.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , Fumaça/análise
5.
J Chem Phys ; 152(18): 184905, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414275

RESUMO

The loop formation of a single polymer chain has served as a model system for various biological and chemical processes. Theories based on the Smoluchowski equation proposed that the rate constant (kloop) of the loop formation would be inversely proportional to viscosity (η), i.e., kloop ∼ η-1. Experiments and simulations showed, however, that kloop showed the fractional viscosity dependence of kloop ∼ η-ß with ß < 1 either in glasses or in low-viscosity solutions. The origin of the fractional viscosity dependence remains elusive and has been attributed to phenomenological aspects. In this paper, we illustrate that the well-known failure of classical kinetics of the loop formation results from the breakdown of the local thermal equilibrium (LTE) approximation and that the mutual information can quantify the breakdown of the LTE successfully.

6.
J Phys Chem B ; 123(43): 9250-9259, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31589036

RESUMO

The addition of nanoparticles (NPs) to a free-standing polymer film affects the properties of the film such as viscosity and glass transition temperature. Recent experiments, for example, showed that the glass transition temperature of thin polymer films was dependent on how NPs were distributed within the polymer films. However, the spatial arrangement of NPs in free-standing polymer films and its effect on the diffusion of NPs and polymers remain elusive at a molecular level. In this study, we employ generic coarse-grained models for polymers and NPs and perform extensive molecular dynamics simulations to investigate the diffusion of polymers and NPs in free-standing thin polymer films. We find that small NPs are likely to stay at the interfacial region of the polymer film, while large NPs tend to stay at the center of the film. On the other hand, as the interaction between a NP and a monomer becomes more attractive, the NP is more likely to be placed at the film center. The diffusion of monomers slows down slightly as more NPs are added to the film. Interestingly, the NP diffusion is dependent strongly on the spatial arrangement of the NPs: NPs at the interfacial region diffuse faster and undergo more non-Gaussian diffusion than NPs at the film center, which implies that the interfacial region would be more mobile and dynamically heterogeneous than the film center. We also find that the mechanism for non-Gaussian diffusion of NPs at the film center differs from that at the interfacial region and that the NP diffusion would reflect the local viscosity of the polymer films.

7.
Artif Organs ; 27(1): 49-60, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12534713

RESUMO

Flow in the blood sac of the Korean artificial heart is numerically simulated by finite element method. Fluid-structure interaction algorithm is employed to compute the three-dimensional blood flow interacting with the sac material. For verification of the numerical method of fluid-structure interaction, two-dimensional flow in a collapsible channel with initial tension is simulated and the results are compared with numerical solutions from the literature. Incompressible viscous flow and linear elastic solid are assumed for the blood and the sac material in the device, respectively. The motion of the actuator is simplified by a time-varying pressure boundary condition imposed on the outer surface of the sac. Numerical solutions on the unsteady three-dimensional blood flow in the sac are provided for the cactus-type model in this study. During systole, the inlet is closed and the blood sac is squeezed by the action of the prescribed pressure on the surface. During diastole, the sac is filled with the blood coming from the inlet while the outlet is closed. A strong flow to the outlet and a stagnated flow near the inlet are observed during systole. Shear stress distribution is also delineated to assess the possibility of thrombus formation. We also simulate numerically the hemodynamics of "the reversed model" where the inlet and outlet are reversed for surgical convenience. It is observed that a recirculating flow was generated near the inner corner of the sac in the reversed model. To assess the material strength of the sac, the shear stress distribution in the solid material is also presented.


Assuntos
Circulação Coronária/fisiologia , Coração Artificial , Hemorreologia , Imageamento Tridimensional , Análise Numérica Assistida por Computador , Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Análise de Elementos Finitos , Hemodinâmica/fisiologia , Humanos , Coreia (Geográfico) , Desenho de Prótese , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA