Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e11105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444724

RESUMO

Urbanization is commonly associated with biodiversity loss and habitat fragmentation. However, urban environments often have greenspaces that can support wildlife populations, including rare species. The challenge for conservation planners working in these systems is identifying priority habitats and corridors for protection before they are lost. In a rapidly changing urban environment, this requires prompt decisions informed by accurate spatial information. Here, we combine several approaches to map habitat and assess connectivity for a diverse set of rare species in seven urban study areas across southern Michigan, USA. We incorporated multiple connectivity tools for a comprehensive appraisal of species-habitat patterns across these urban landscapes. We observed distinct differences in connectivity by taxonomic group and site. The three turtle species (Blanding's, Eastern Box, and Spotted) consistently had more habitat predicted to be suitable per site than other evaluated species. This is promising for this at-risk taxonomic group and allows conservation efforts to focus on mitigating threats such as road mortality. Grassland and prairie-associated species (American Bumble Bee, Black and Gold Bumble Bee, and Henslow's Sparrow) had the least amount of habitat on a site-by-site basis. Kalamazoo and the northern Detroit sites had the highest levels of multi-species connectivity across the entire study area based on the least cost paths. These connectivity results have direct applications in urban planning. Kalamazoo, one of the focal urban regions, has implemented a Natural Features Protection (NFP) plan to bolster natural area protections within the city. We compared our connectivity results to the NFP area and show where this plan will have an immediate positive impact and additional areas for potential consideration in future expansions of the protection network. Our results show that conservation opportunities exist within each of the assessed urban areas for maintaining rare species, a key benefit of this multi-species and multi-site approach.

2.
PLoS One ; 12(2): e0172011, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28196149

RESUMO

Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change.


Assuntos
Mudança Climática , Variação Genética , Modelos Biológicos , Viperidae/fisiologia , Animais , Feminino , Great Lakes Region , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA