Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1213290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753166

RESUMO

Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging is the gold standard for non-invasive myocardial tissue characterisation. However, accurate segmentation of the left ventricular (LV) myocardium remains a challenge due to limited training data and lack of quality control. This study addresses these issues by leveraging generative adversarial networks (GAN)-generated virtual native enhancement (VNE) images to expand the training set and incorporating an automated quality control-driven (QCD) framework to improve segmentation reliability. Methods: A dataset comprising 4,716 LGE images (from 1,363 patients with hypertrophic cardiomyopathy and myocardial infarction) was used for development. To generate additional clinically validated data, LGE data were augmented with a GAN-based generator to produce VNE images. LV was contoured on these images manually by clinical observers. To create diverse candidate segmentations, the QCD framework involved multiple U-Nets, which were combined using statistical rank filters. The framework predicted the Dice Similarity Coefficient (DSC) for each candidate segmentation, with the highest predicted DSC indicating the most accurate and reliable result. The performance of the QCD ensemble framework was evaluated on both LGE and VNE test datasets (309 LGE/VNE images from 103 patients), assessing segmentation accuracy (DSC) and quality prediction (mean absolute error (MAE) and binary classification accuracy). Results: The QCD framework effectively and rapidly segmented the LV myocardium (<1 s per image) on both LGE and VNE images, demonstrating robust performance on both test datasets with similar mean DSC (LGE: 0.845±0.075; VNE: 0.845±0.071; p=ns). Incorporating GAN-generated VNE data into the training process consistently led to enhanced performance for both individual models and the overall framework. The quality control mechanism yielded a high performance (MAE=0.043, accuracy=0.951) emphasising the accuracy of the quality control-driven strategy in predicting segmentation quality in clinical settings. Overall, no statistical difference (p=ns) was found when comparing the LGE and VNE test sets across all experiments. Conclusions: The QCD ensemble framework, leveraging GAN-generated VNE data and an automated quality control mechanism, significantly improved the accuracy and reliability of LGE segmentation, paving the way for enhanced and accountable diagnostic imaging in routine clinical use.

2.
Circulation ; 146(20): 1492-1503, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36124774

RESUMO

BACKGROUND: Myocardial scars are assessed noninvasively using cardiovascular magnetic resonance late gadolinium enhancement (LGE) as an imaging gold standard. A contrast-free approach would provide many advantages, including a faster and cheaper scan without contrast-associated problems. METHODS: Virtual native enhancement (VNE) is a novel technology that can produce virtual LGE-like images without the need for contrast. VNE combines cine imaging and native T1 maps to produce LGE-like images using artificial intelligence. VNE was developed for patients with previous myocardial infarction from 4271 data sets (912 patients); each data set comprises slice position-matched cine, T1 maps, and LGE images. After quality control, 3002 data sets (775 patients) were used for development and 291 data sets (68 patients) for testing. The VNE generator was trained using generative adversarial networks, using 2 adversarial discriminators to improve the image quality. The left ventricle was contoured semiautomatically. Myocardial scar volume was quantified using the full width at half maximum method. Scar transmurality was measured using the centerline chord method and visualized on bull's-eye plots. Lesion quantification by VNE and LGE was compared using linear regression, Pearson correlation (R), and intraclass correlation coefficients. Proof-of-principle histopathologic comparison of VNE in a porcine model of myocardial infarction also was performed. RESULTS: VNE provided significantly better image quality than LGE on blinded analysis by 5 independent operators on 291 data sets (all P<0.001). VNE correlated strongly with LGE in quantifying scar size (R, 0.89; intraclass correlation coefficient, 0.94) and transmurality (R, 0.84; intraclass correlation coefficient, 0.90) in 66 patients (277 test data sets). Two cardiovascular magnetic resonance experts reviewed all test image slices and reported an overall accuracy of 84% for VNE in detecting scars when compared with LGE, with specificity of 100% and sensitivity of 77%. VNE also showed excellent visuospatial agreement with histopathology in 2 cases of a porcine model of myocardial infarction. CONCLUSIONS: VNE demonstrated high agreement with LGE cardiovascular magnetic resonance for myocardial scar assessment in patients with previous myocardial infarction in visuospatial distribution and lesion quantification with superior image quality. VNE is a potentially transformative artificial intelligence-based technology with promise in reducing scan times and costs, increasing clinical throughput, and improving the accessibility of cardiovascular magnetic resonance in the near future.


Assuntos
Aprendizado Profundo , Infarto do Miocárdio , Suínos , Animais , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Gadolínio , Meios de Contraste , Inteligência Artificial , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Imagem Cinética por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA