Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 286(2): 120-125, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34664277

RESUMO

Carbonated wollastonite clinker (CS) may be suitable as supplementary cementitious material (SCM) for mortar and concrete. The microstructure of unground CS clinker, carbonated CS slurry and a mortar blended with carbonated CS are investigated by scanning electron microscopy. Additionally, a reference mortar with pure Portland cement and one with a cement replacement level of 30 mass-% by carbonated CS are produced to assess its contribution to compressive strength development. The calcium silicates are decalcified during carbonation resulting in CaCO3 and amorphous SiO2 . The latter reacts when used as SCM in mortar influencing the Ca/Si ratio of calcium-silicate-hydrate and contributing to compressive strength development.


Assuntos
Cálcio , Dióxido de Silício , Compostos de Cálcio/química , Silicatos/química
2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 4): 674-682, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831286

RESUMO

Alkali-silica reaction (ASR) causes severe degradation of concrete. The mechanical property of the ASR product is fundamental to the multiscale modeling of concrete behavior over the long term. Despite years of study, there is a lack of consensus regarding the structure and elastic modulus of the ASR product. Here, ASR products from both degraded field infrastructures and laboratory synthesis were investigated using high-pressure X-ray diffraction. The results unveiled the multiphase and metastable nature of ASR products from the field. The dominant phase undergoes permanent phase change via collapsing of the interlayer region and in-planar glide of the main layer, under pressure >2 GPa. The bulk moduli of the low- and high-pressure polymorphs are 27±3 and 46±3 GPa, respectively. The laboratory-synthesized sample and the minor phase in the field samples undergo no changes of phase during compression. Their bulk moduli are 35±2 and 76±4 GPa, respectively. The results provide the first atomistic-scale measurement of the mechanical property of crystalline ASR products.

3.
J Colloid Interface Sci ; 336(2): 730-7, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19505695

RESUMO

The pore systems of cement-based materials are studied by N(2) sorption and mercury intrusion porosimetry (MIP). Pore size distributions and internal surfaces are derived. Especially in materials with a broad pore size distribution, these (and other) methods generally do not lead to coincident results. It is shown here, how the interpretation of the experimental data of the two methods may be modified in order to obtain coincident pore size distributions from both methods. The studied pore systems are described as array of chambers which are connected by smaller throats. N(2) adsorption is used to calculate the size of the pores, whereby no distinction between throat or chamber type is possible with this method. Assuming mercury entrapping in ink-bottle type pores (pores that are connected to an external surface through smaller pores only) being the dominant process for mercury snap-off during extrusion and applying multi-cycle MIP, the calculation of the size of the entrances of these ink-bottles is possible. It is shown that similar results also may be derived from mercury extrusion data by applying a contact angle correction for the retracting mercury meniscus. A good agreement of the pore size distribution of the connected, non-ink-bottle type pores derived from either N(2) sorption or mercury intrusion is obtained. Samples of cement paste and mortar are analysed. A significant difference between cement paste and mortar regarding the neck entrances of ink-bottle type pores is found and attributed to the coarse pore space around the aggregates, the interfacial transition zone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA