Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 7(1): 9977, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855637

RESUMO

The effects of methionine restriction (MR) in rodents are well established; it leads to decreased body and fat mass, improved glucose homeostasis and extended lifespan, despite increased energy intake. Leucine restriction (LR) replicates some, but not all, of these effects of MR. To determine any differences in metabolic effects between MR and LR, this study compared 8 weeks of MR (80% restriction), LR (80% restriction) and control diet in 10-month-old C57BL/6J male mice. Body composition, food intake and glucose homeostasis were measured throughout the study and biochemical analyses of white adipose tissue (WAT) and liver were performed. MR and LR decreased body and fat mass, increased food intake, elevated lipid cycling in WAT and improved whole-body glucose metabolism and hepatic insulin sensitivity in comparison to the control diet. MR produced more substantial effects than LR on body mass and glucose homeostasis and reduced hepatic lipogenic gene expression, which was absent with the LR diet. This could be a result of amino acid-specific pathways in the liver responsible for FGF21 stimulation (causing varied levels of FGF21 induction) and Akt activation. In summary, LR is effective at improving metabolic health; however, MR produces stronger effects, suggesting they activate distinct signalling pathways.


Assuntos
Composição Corporal , Dieta/métodos , Saúde , Leucina/metabolismo , Metionina/metabolismo , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético , Glucose/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL
3.
Clin Sci (Lond) ; 131(20): 2489-2501, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899902

RESUMO

Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with type 1 or type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance, due to impaired insulin receptor (IR) signalling. Here, we demonstrate that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR prevents and reverses atherosclerotic plaque formation in an LDLR-/- mouse model of atherosclerosis. Acute (single dose) or chronic PTP1B inhibitor (trodusquemine) treatment of LDLR-/- mice decreased weight gain and adiposity, improved glucose homeostasis and attenuated atherosclerotic plaque formation. This was accompanied by a reduction in both, circulating total cholesterol and triglycerides, a decrease in aortic monocyte chemoattractant protein-1 (MCP-1) expression levels and hyperphosphorylation of aortic Akt/PKB and AMPKα. Our findings are the first to demonstrate that PTP1B inhibitors could be used in prevention and reversal of atherosclerosis development and reduction in CVD risk.


Assuntos
Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Colestanos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Placa Aterosclerótica , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Receptores de LDL/deficiência , Espermina/análogos & derivados , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Quimiocina CCL2/metabolismo , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Esquema de Medicação , Predisposição Genética para Doença , Homeostase , Masculino , Camundongos Knockout , Fenótipo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de LDL/genética , Transdução de Sinais/efeitos dos fármacos , Espermina/administração & dosagem , Fatores de Tempo , Triglicerídeos/sangue , Redução de Peso
4.
Mech Ageing Dev ; 157: 35-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27453066

RESUMO

Dietary methionine restriction (MR) leads to loss of adiposity, improved insulin sensitivity and lifespan extension. The possibility that dietary MR can protect the kidney from age-associated deterioration has not been addressed. Aged (10-month old) male and female mice were placed on a MR (0.172% methionine) or control diet (0.86% methionine) for 8-weeks and blood glucose, renal insulin signalling, and gene expression were assessed. Methionine restriction lead to decreased blood glucose levels compared to control-fed mice, and enhanced insulin-stimulated phosphorylation of PKB/Akt and S6 in kidneys, indicative of improved glucose homeostasis. Increased expression of lipogenic genes and downregulation of PEPCK were observed, suggesting that kidneys from MR-fed animals are more insulin sensitive. Interestingly, renal gene expression of the mitochondrial uncoupling protein UCP1 was upregulated in MR-fed animals, as were the anti-ageing and renoprotective genes Sirt1, FGF21, klotho, and ß-klotho. This was associated with alterations in renal histology trending towards reduced frequency of proximal tubule intersections containing vacuoles in mice that had been on dietary MR for 190days compared to control-fed mice, which exhibited a pre-diabetic status. Our results indicate that dietary MR may offer therapeutic potential in ameliorating the renal functional decline related to ageing and other disorders associated with metabolic dysfunction by enhancing renal insulin sensitivity and renoprotective gene expression.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica , Insulina/metabolismo , Rim/metabolismo , Metionina/deficiência , Transdução de Sinais , Envelhecimento/patologia , Animais , Feminino , Rim/patologia , Masculino , Camundongos
5.
Aging Cell ; 13(5): 817-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24935677

RESUMO

Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole-body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12-month-old mice completely reversed age-induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2-month-old control-fed mice. This was despite a significant increase in food intake in 12-month-old MR-fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin-induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short-term 48-h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole-body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age-induced metabolic syndrome in adult humans.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Metionina/administração & dosagem , Metionina/deficiência , Obesidade/dietoterapia , Animais , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Glucose/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fenótipo
6.
Diabetes ; 63(2): 456-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186864

RESUMO

Protein tyrosine phosphatase-1B (PTP1B) negatively regulates insulin and leptin signaling, rendering it an attractive drug target for treatment of obesity-induced insulin resistance. However, some studies suggest caution when targeting macrophage PTP1B, due to its potential anti-inflammatory role. We assessed the role of macrophage PTP1B in inflammation and whole-body metabolism using myeloid-cell (LysM) PTP1B knockout mice (LysM PTP1B). LysM PTP1B mice were protected against lipopolysaccharide (LPS)-induced endotoxemia and hepatic damage associated with decreased proinflammatory cytokine secretion in vivo. In vitro, LPS-treated LysM PTP1B bone marrow-derived macrophages (BMDMs) displayed increased interleukin (IL)-10 mRNA expression, with a concomitant decrease in TNF-α mRNA levels. These anti-inflammatory effects were associated with increased LPS- and IL-10-induced STAT3 phosphorylation in LysM PTP1B BMDMs. Chronic inflammation induced by high-fat (HF) feeding led to equally beneficial effects of macrophage PTP1B deficiency; LysM PTP1B mice exhibited improved glucose and insulin tolerance, protection against LPS-induced hyperinsulinemia, decreased macrophage infiltration into adipose tissue, and decreased liver damage. HF-fed LysM PTP1B mice had increased basal and LPS-induced IL-10 levels, associated with elevated STAT3 phosphorylation in splenic cells, IL-10 mRNA expression, and expansion of cells expressing myeloid markers. These increased IL-10 levels negatively correlated with circulating insulin and alanine transferase levels. Our studies implicate myeloid PTP1B in negative regulation of STAT3/IL-10-mediated signaling, highlighting its inhibition as a potential anti-inflammatory and antidiabetic target in obesity.


Assuntos
Gorduras na Dieta/efeitos adversos , Hiperinsulinismo/induzido quimicamente , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Células Mieloides/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas , Endotoxemia/induzido quimicamente , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose/metabolismo , Homeostase , Inflamação/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Baço/citologia , Baço/metabolismo
7.
PLoS One ; 7(2): e32700, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389718

RESUMO

Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/-)) were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/-) mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD)-fed adip-crePTP1B(-/-) mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR) and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α) expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.


Assuntos
Adipócitos/citologia , Adipócitos/enzimologia , Glucose/metabolismo , Lipogênese/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Adipócitos/metabolismo , Animais , Western Blotting , Composição Corporal/genética , Composição Corporal/fisiologia , Tamanho Celular , Células Cultivadas , Homeostase/genética , Homeostase/fisiologia , Imunoprecipitação , Lipogênese/genética , Camundongos , Camundongos Mutantes , Tomografia por Emissão de Pósitrons , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA