RESUMO
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane-phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease-a crucial benefit to the sugar industry.
RESUMO
Wastewater from the textile industry dyeing process containing high loads of synthetic dyes leads to pollution of water with these toxic and genotoxic dyes. Much effort has been put towards developing biological systems to resolve this issue. Mycoremediation is a well-known approach using fungi to remove, degrade, or remediate pollutants and can be applied to decolorize textile dyes in industrial effluent. Fungal strains from four genera of Polyporales, namely Coriolopsis sp. TBRC 2756, Fomitopsis pinicola TBRC-BCC 30881, Rigidoporus vinctus TBRC 6770, and Trametes pocas TBRC-BCC 18705, were studied for decolorization efficiency, and R. vinctus was found to exhibit the greatest activity in removing all seven tested reactive dyes and one acid dye with a decolorization efficiency of 80% or more within 7 days under limited oxygen. This fungus simultaneously degraded multiple dyes in synthetic wastewater as well as industrial effluent from the dyeing process. To enhance the decolorization rate, various fungal consortia were formulated for testing. However, these consortia only trivially improved efficiency compared with using R. vinctus TBRC 6770 alone. Evaluation of R. vinctus TBRC 6770 decolorization ability was further performed in a 15-L bioreactor to test its ability to eliminate multiple dyes from industrial effluent. The fungus took 45 days to adapt to growth in the bioreactor and subsequently reduced dye concentration to less than 10% of the initial concentration. The following six cycles required only 4-7 days to reduce dye concentrations to less than 25%, demonstrating that the system can run efficiently for multiple cycles without the need for extra medium or other carbon sources.
Assuntos
Trametes , Águas Residuárias , Madeira , Corantes , TêxteisRESUMO
Photosynthetic organisms, such as higher plants and algae, require light to survive. However, an excessive amount of light can be harmful due to the production of reactive oxygen species (ROS), which cause cell damage and, if it is not effectively regulated, cell death. The study of plants' responses to light can aid in the development of methods to improve plants' growth and productivity. Due to the multicellular nature of plants, there may be variations in the results based on plant age and tissue type. Chlamydomonas reinhardtii, a unicellular green alga, has also been used as a model organism to study photosynthesis and photoprotection. Nonetheless, the majority of the research has been conducted with strains that have been consistently utilized in laboratories and originated from the same source. Despite the availability of many field isolates of this species, very few studies have compared the light responses of field isolates. This study examined the responses of two field isolates of Chlamydomonas to high light stress. The light-tolerant strain, CC-4414, managed reactive oxygen species (ROS) slightly better than the sensitive strain, CC-2344, did. The proteomic data of cells subjected to high light revealed cellular modifications of the light-tolerant strain toward membrane proteins. The morphology of cells under light stress revealed that this strain utilized the formation of palmelloid structures and cell aggregation to shield cells from excessive light. As indicated by proteome data, morphological modifications occur simultaneously with the increase in protein degradation and autophagy. By protecting cells from stress, cells are able to continue to upregulate ROS management mechanisms and prevent cell death. This is the first report of palmelloid formation in Chlamydomonas under high light stress.
Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Chlamydomonas/metabolismo , Fotossíntese/fisiologiaRESUMO
Rice blast disease is a serious disease in rice caused by Magnaporthe oryzae (M. oryzae). Ascorbic acid (AsA), or vitamin C, is a strong antioxidant that prevents oxidative damage to cellular components and plays an essential role in plant defense response. GDP-D-mannose pyrophosphorylase (GMP or VTC1) is an enzyme that generates GDP-D-mannose for AsA, cell wall, and glycoprotein synthesis. The OsVTC1 gene has three homologs in the rice genome: OsVTC1-1, OsVTC1-3, and OsVTC1-8. Using OsVTC1-1 RNAi lines, this study investigated the role of the OsVTC1-1 gene during rice blast fungus inoculation. The OsVTC1-1 RNAi inoculated with rice blast fungus induced changes to cell wall monosaccharides, photosynthetic efficiency, reactive oxygen species (ROS) accumulation, and malondialdehyde (MDA) content. Additionally, the OsVTC1-1 RNAi lines were shown to be more resistant to rice blast fungus than the wild type. Genes and proteins related to defense response, plant hormone synthesis, and signaling pathways, especially salicylic acid and jasmonic acid, were up-regulated in the OsVTC1-1 RNAi lines after rice blast inoculation. These results suggest that the OsVTC1-1 gene regulates rice blast resistance through several defense mechanisms, including hormone synthesis and signaling pathways.
RESUMO
Sattahipmycin was isolated from the mycelium of marine-derived Streptomyces sp. GKU 257-1 by following the antibiofilm activity against E. coli NBRC 3972 throughout the purification steps. The structure of sattahipmycin was determined to be a new polycyclic xanthone related to xantholipin but lacking a dioxymethylene and a chlorinated carbon. This compound showed activity toward Gram-positive bacteria and Plasmodium falciparum, antibiofilm formation of Escherichia coli, and cytotoxicity to human cancer cell lines. Using genome sequence data, a biosynthetic pathway leading to sattahipmycin has been proposed involving an uncharacterized type II polyketide synthase biosynthetic gene cluster.
Assuntos
Streptomyces , Xantonas , Escherichia coli/genética , Bactérias Gram-Positivas , Humanos , Família Multigênica , Streptomyces/química , Xantonas/químicaRESUMO
Sugarcane white leaf disease (SCWLD) is caused by phytoplasma, a serious sugarcane phytoplasma pathogen, which causes significant decreases in crop yield and sugar quality. The identification of proteins involved in the defense mechanism against SCWLD phytoplasma may help towards the development of varieties resistant to SCWLD. We investigated the proteomes of four sugarcane varieties with different levels of susceptibility to SCWLD phytoplasma infection, namely K88-92 and K95-84 (high), KK3 (moderate), and UT1 (low) by quantitative label-free nano-liquid chromatography-tandem mass spectrometry (nano LC-MS/MS). A total of 248 proteins were identified and compared among the four sugarcane varieties. Two potential candidate protein biomarkers for reduced susceptibility to SCWLD phytoplasma were identified as proteins detected only in UT1. The functions of these proteins are associated with protein folding, metal ion binding, and oxidoreductase. The candidate biomarkers could be useful for further study of the sugarcane defense mechanism against SCWLD phytoplasma, and in molecular and conventional breeding strategies for variety improvement.
Assuntos
Saccharum , Saccharum/metabolismo , Proteômica/métodos , Suscetibilidade a Doenças , Espectrometria de Massas em Tandem , Doenças das Plantas , Melhoramento Vegetal , Folhas de Planta , Biomarcadores/metabolismoRESUMO
Eukaryotic messenger RNA is translated via a 5' cap-dependent initiation mechanism. Experimental evidence for proteins involved with translation initiation among eukaryotic parasites is lacking, including Plasmodium falciparum, the human malaria parasite. Native P. falciparum proteins from asexual stage parasites were enriched using a 5' cap affinity matrix. Proteomic analysis of enriched protein eluates revealed proteins putatively associated with the 5' cap. The canonical 5' cap-binding protein eIF4E (PF3D7_0315100) was the most reproducibly enriched protein. The eIF4A and eIF4G proteins hypothesized to form the eIF4F initiation complex with eIF4E were also detected as 5' cap enriched, albeit with low reproducibility. Surprisingly, enolase (ENO) was the second most enriched protein after eIF4E. Recombinant ENO protein did not demonstrate 5' cap activity, suggesting an indirect association of the native ENO with the 5' cap.
Assuntos
Malária , Parasitos , Animais , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Parasitos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos TestesRESUMO
Rabies is a deadly viral disease caused by the rabies virus (RABV), transmitted through a bite of an infected host, resulting in irreversible neurological symptoms and a 100% fatality rate in humans. Despite many aspects describing rabies neuropathogenesis, numerous hypotheses remain unanswered and concealed. Observations obtained from infected primary neurons or mouse brain samples are more relevant to human clinical rabies than permissive cell lines; however, limitations regarding the ethical issue and sample accessibility become a hurdle for discovering new insights into virus-host interplays. To better understand RABV pathogenesis in humans, we generated human-induced pluripotent stem cell (hiPSC)-derived neurons to offer the opportunity for an inimitable study of RABV infection at a molecular level in a pathologically relevant cell type. This study describes the characteristics and detailed proteomic changes of hiPSC-derived neurons in response to RABV infection using LC-MS/MS quantitative analysis. Gene ontology (GO) enrichment of differentially expressed proteins (DEPs) reveals temporal changes of proteins related to metabolic process, immune response, neurotransmitter transport/synaptic vesicle cycle, cytoskeleton organization, and cell stress response, demonstrating fundamental underlying mechanisms of neuropathogenesis in a time-course dependence. Lastly, we highlighted plausible functions of heat shock cognate protein 70 (HSC70 or HSPA8) that might play a pivotal role in regulating RABV replication and pathogenesis. Our findings acquired from this hiPSC-derived neuron platform help to define novel cellular mechanisms during RABV infection, which could be applicable to further studies to widen views of RABV-host interaction.
Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Proteoma/metabolismo , Vírus da Raiva/metabolismo , Raiva/virologia , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , Neurônios/citologia , Neurônios/virologia , Raiva/metabolismo , Vírus da Raiva/isolamento & purificação , Vírus da Raiva/patogenicidadeRESUMO
The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.
RESUMO
BACKGROUND: Various types of oral tumors, either benign or malignant, are commonly found in dogs. Since saliva directly contacts the tumors and saliva collection is non-invasive, easily accessible and cost effective, salivary biomarkers are practical to be used for the diagnosis and/or prognosis of these diseases. However, there is limited knowledge of protein expression in saliva for canine oral tumors. The present study aimed to investigate novel biomarkers from the salivary proteome of dogs with early- and late-stage oral melanoma (EOM and LOM, respectively), oral squamous cell carcinoma (OSCC), benign oral tumors (BN), and periodontitis and healthy controls (CP), using an in-gel digestion coupled with mass spectrometry (GeLC-MS/MS). The relationships between protein candidates and chemotherapy drugs were explored and the expression of potential biomarkers in saliva and tissues was verified by western blot analysis. RESULTS: For saliva samples, increased expression of protein tyrosine phosphatase non-receptor type 5 (PTPN5) was shown in all tumor groups compared with the CP group. Marked expression of PTPN5 was also observed in LOM and OSCC compared with that in BN and EOM. In addition, tumor protein p53 (p53), which appeared in the PTPN5-drug interactions, was exhibited to be expressed in all tumor groups compared with that in the CP group. For tissue samples, increased expression of p53 was shown in LOM compared with the control group. CONCLUSION: PTPN5 and p53 were proposed to be potential salivary biomarkers of canine oral tumors.
Assuntos
Biomarcadores Tumorais/análise , Doenças do Cão/diagnóstico , Neoplasias Bucais/veterinária , Saliva/química , Animais , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/veterinária , Cães , Eletroforese/métodos , Eletroforese/veterinária , Feminino , Masculino , Melanoma/diagnóstico , Melanoma/veterinária , Neoplasias Bucais/diagnóstico , Periodontite/veterinária , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/veterinária , Proteína Supressora de Tumor p53/metabolismoRESUMO
Whole genome analysis of Streptomyces sp. KO-7888 has revealed various pathway-specific transcriptional regulatory genes associated with silent biosynthetic gene clusters. A Streptomyces antibiotic regulatory protein gene, speR, located adjacent to a novel nonribosomal peptide synthetase (NRPS) gene cluster, was overexpressed in the wild-type strain. The resulting recombinant strain of Streptomyces sp. KO-7888 produced two new lipopeptides, sarpeptins A and B. Their structures were elucidated by high-resolution electrospray ionization mass spectrometry, NMR analysis, and the advanced Marfey's method. The distinct modular sections of the corresponding NRPS biosynthetic gene cluster were characterized, and the assembly line for production of the lipopeptide chain was proposed.
Assuntos
Lipopeptídeos/isolamento & purificação , Peptídeo Sintases/metabolismo , Streptomyces/metabolismo , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Genes Bacterianos , Genes Reguladores , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Conformação Proteica , Streptomyces/genéticaRESUMO
Studies have recently shown that the bacteria survivability within biofilms is responsible for the emergence of superbugs. The combat of bacterial infections, without enhancing its resistance to antibiotics, includes the use of nanoparticles to quench the quorum sensing of these biofilm-forming bacteria. Several sequential and parallel multi-stage communication processes are involved in the formation of biofilms. In this paper, we use proteomic data from a wet lab experiment to identify the communication channels that are vital to these processes. We also identified the main proteins from each channel and propose the use of jamming signals from synthetically engineered bacteria to suppress the production of those proteins. This biocompatible technique is based on synthetic biology and enables the inhibition of biofilm formation. We analyze the communications performance of the jamming process by evaluating the path loss for a number of conditions that include different engineered bacterial population sizes, distances between the populations, and molecular signal power. Our results show that sufficient molecular pulse-based jamming signals are able to prevent the biofilm formation by creating lossy communications channels (almost -3 dB for certain scenarios). From these results, we define the main design parameters to develop a fully operational bacteria-based jamming system.
Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia , Biologia Sintética/métodos , Proteínas de Bactérias/metabolismo , Computadores Moleculares , Bases de Dados de Proteínas , Modelos Biológicos , Proteômica , Staphylococcus aureus/fisiologiaRESUMO
A new cyclic depsipeptide, rakicidin F (1), along with the known compound rakicidin C (2), was isolated from the fermentation broth of the marine sponge-derived actinomycete strain Streptomyces sp. GKU 220. Their structures were elucidated by interpreting the HRFABMS and NMR spectroscopic data. Rakicidin F (1) showed growth inhibitory activity against bacteria.The Journal of Antibiotics advance online publication, 2 August 2017; doi:10.1038/ja.2017.92.