Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 10(1): veae025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566975

RESUMO

The increase in human-mediated introduction of plant species to new regions has resulted in a rise of invasive exotic plant species (IEPS) that has had significant effects on biodiversity and ecosystem processes. One commonly accepted mechanism of invasions is that proposed by the enemy release hypothesis (ERH), which states that IEPS free from their native herbivores and natural enemies in new environments can outcompete indigenous species and become invasive. We here propose the virome release hypothesis (VRH) as a virus-centered variant of the conventional ERH that is only focused on enemies. The VRH predicts that vertically transmitted plant-associated viruses (PAV, encompassing phytoviruses and mycoviruses) should be co-introduced during the dissemination of the IEPS, while horizontally transmitted PAV of IEPS should be left behind or should not be locally transmitted in the introduced area due to a maladaptation of local vectors. To document the VRH, virome richness and composition as well as PAV prevalence, co-infection, host range, and transmission modes were compared between indigenous plant species and an invasive grass, cane bluestem (Bothriochloa barbinodis), in both its introduced range (southern France) and one area of its native range (Sonoran Desert, Arizona, USA). Contrary to the VRH, we show that invasive populations of B. barbinodis in France were not associated with a lower PAV prevalence or richness than native populations of B. barbinodis from the USA. However, comparison of virome compositions and network analyses further revealed more diverse and complex plant-virus interactions in the French ecosystem, with a significant richness of mycoviruses. Setting mycoviruses apart, only one putatively vertically transmitted phytovirus (belonging to the Amalgaviridae family) and one putatively horizontally transmitted phytovirus (belonging to the Geminiviridae family) were identified from B. barbinodis plants in the introduced area. Collectively, these characteristics of the B. barbinodis-associated PAV community in southern France suggest that a virome release phase may have immediately followed the introduction of B. barbinodis to France in the 1960s or 1970s, and that, since then, the invasive populations of this IEPS have already transitioned out of this virome release phase, and have started interacting with several local mycoviruses and a few local plant viruses.

2.
Phytopathology ; 114(2): 328-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37584505

RESUMO

Bacterial adaptation is facilitated by the presence of mobile genetic elements and horizontal gene transfer of genes, such as those coding for virulence factors or resistance to antimicrobial compounds. A hybrid assembly of Nanopore MinIon long-read and Illumina short-read data was produced from a copper-resistant Xanthomonas campestris pv. campestris strain isolated from symptomatic broccoli leaves in Mauritius. We obtained a 5.2-Mb high-quality chromosome and no plasmid. We found four genomic islands, three of which were characterized as integrative conjugative elements or integrative mobilizable elements. These genomic islands carried type III effectors and the copper resistance copLABMGF system involved in pathogenicity and environmental adaptation, respectively.


Assuntos
Brassica , Xanthomonas campestris , Cobre , Xanthomonas campestris/genética , Transferência Genética Horizontal , Maurício , Doenças das Plantas
3.
Sci Rep ; 13(1): 12122, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495608

RESUMO

The microsporidian Vairimorpha (Nosema) ceranae is one of the most common parasites of the honeybee. A single honeybee carries many parasites and therefore multiple alleles of V. ceranae genes that seem to be ubiquitous. As a consequence, nucleotide diversity analyses have not allowed discriminating genetic structure of parasite populations. We performed deep loci-targeted sequencing to monitor the haplotype frequencies of genome markers in isolates from discontinuous territories, namely the tropical islands of the South West Indian Ocean. The haplotype frequency distribution corroborated the suspected tetraploidy of the parasite. Most major haplotypes were ubiquitous in the area but with variable frequency. While oceanic isolates differed from European and Asian outgroups, parasite populations from distinct archipelagoes also differed in their haplotype distribution. Interestingly an original and very divergent Malagasy isolate was detected. The observed population structure allowed formulating hypotheses upon the natural history of V. ceranae in this oceanic area. We also discussed the usefulness of allelic distribution assessment, using multiple informative loci or genome-wide analyses, when parasite population is not clonal within a single host.


Assuntos
Nosema , Parasitos , Abelhas/genética , Animais , Parasitos/genética , Oceano Índico , Estudo de Associação Genômica Ampla
4.
Virus Evol ; 9(2): vead043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475836

RESUMO

As highly pervasive parasites that sometimes cause disease, viruses are likely major components of all natural ecosystems. An important step towards both understanding the precise ecological roles of viruses and determining how natural communities of viral species are assembled and evolve is obtaining full descriptions of viral diversity and distributions at ecosystem scales. Here, we focused on obtaining such 'community-scale' data for viruses in a single genus. We chose the genus Mastrevirus (family Geminiviridae), members of which have predominantly been found infecting uncultivated grasses (family Poaceae) throughout the tropical and sub-tropical regions of the world. We sampled over 3 years, 2,884 individual Poaceae plants belonging to thirty different species within a 2-ha plot which included cultivated and uncultivated areas on the island of Reunion. Mastreviruses were found in ∼8 per cent of the samples, of which 96 per cent did not have any discernible disease symptoms. The multitude of host-virus associations that we uncovered reveals both the plant species that most commonly host mastreviruses and the mastrevirus species (such as maize streak virus and maize streak Reunion virus) that have especially large host ranges. Our findings are consistent with the hypothesis that perennial plant species capable of hosting years-long mixed mastrevirus infections likely play a disproportionately important role in the generation of inter-species and inter-strain mastrevirus recombinants.

5.
Mol Ecol ; 32(10): 2660-2673, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35593155

RESUMO

Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid-mediated gene sharing events. The bacterial family Lysobacteraceae includes plant commensal, plant pathogenic and opportunistic human pathogens for which plasmid-mediated adaptation has been reported. We searched for homologues of plasmid gene sequences from this family in the entire diversity of available bacterial genome sequences and built a network of plasmid gene sharing from the results. While plasmid genes are openly shared between the bacteria of the family Lysobacteraceae, taxonomy strongly defined the boundaries of these exchanges, which only barely reached other families. Most inferred plasmid gene sharing events involved a few genes only, and evidence of full plasmid transfers were restricted to taxonomically closely related taxa. We detected multiple plasmid-chromosome gene transfers, including the known sharing of a heavy metal resistance transposon. In the network, bacterial lifestyles shaped substructures of isolates colonizing specific ecological niches and harbouring specific types of resistance genes. Genes associated with pathogenicity or antibiotic and metal resistance were among those that most importantly structured the network, highlighting the imprints of human-mediated selective pressure on pathogenic populations. A massive sequencing effort on environmental Lysobacteraceae is therefore required to refine our understanding of how this reservoir fuels the emergence and the spread of genes among this family and its potential impact on plant, animal and human health.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Animais , Humanos , Plasmídeos/genética , Genoma Bacteriano/genética , Antibacterianos , Bactérias/genética
6.
Arch Virol ; 167(11): 2355-2357, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35857149

RESUMO

We report the complete genome sequence of a novel member of the genus Vitivirus (family Betaflexiviridae, subfamily Trivirinae) infecting pineapple. The complete genome sequence of this virus was obtained from total RNA extracted from pineapple leaf samples collected in Reunion Island, using a combination of high-throughput sequencing technologies. The viral genome is 6,757 nt long, excluding the poly(A) tail, and shares all the hallmarks of vitiviruses. Phylogenetic analysis performed on the replication-associated protein and capsid protein gene sequences unambiguously place this new virus, for which we propose the name "pineapple virus A", in the genus Vitivirus.


Assuntos
Ananas , Flexiviridae , Proteínas do Capsídeo/genética , Flexiviridae/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , RNA , RNA Mensageiro , RNA Viral/genética , Reunião
7.
Phytopathology ; 112(11): 2253-2272, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35722889

RESUMO

Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ácidos Nucleicos , Vírus de Plantas , Metagenômica/métodos , Ecossistema , Doenças das Plantas , Vírus de Plantas/genética , Vírion/genética , Plantas
8.
Sci Rep ; 12(1): 695, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027584

RESUMO

In recent decades, a legion of monopartite begomoviruses transmitted by the whitefly Bemisia tabaci has emerged as serious threats to vegetable crops in Africa. Recent studies in Burkina Faso (West Africa) reported the predominance of pepper yellow vein Mali virus (PepYVMLV) and its frequent association with a previously unknown DNA-B component. To understand the role of this DNA-B component in the emergence of PepYVMLV, we assessed biological traits related to virulence, virus accumulation, location in the tissue and transmission. We demonstrate that the DNA-B component is not required for systemic movement and symptom development of PepYVMLV (non-strict association), but that its association produces more severe symptoms including growth arrest and plant death. The increased virulence is associated with a higher viral DNA accumulation in plant tissues, an increase in the number of contaminated nuclei of the phloem parenchyma and in the transmission rate by B. tabaci. Our results suggest that the association of a DNA-B component with the otherwise monopartite PepYVMLV is a key factor of its emergence.


Assuntos
Begomovirus/genética , Begomovirus/patogenicidade , DNA Viral/genética , DNA Viral/metabolismo , Doenças das Plantas/virologia , Plantas/virologia , Virulência/genética , Animais , Hemípteros/virologia , Plantas/metabolismo
9.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726588

RESUMO

Viral metagenomic studies have enabled the discovery of many unknown viruses and revealed that viral communities are much more diverse and ubiquitous than previously thought. Some viruses have multiple genome components that are encapsidated either in separate virions (multipartite viruses) or in the same virion (segmented viruses). In this study, we identify what is possibly a novel bipartite plant-associated circular single-stranded DNA virus in a wild prickly pear cactus, Opuntia discolor, that is endemic to the Chaco ecoregion in South America. Two ~1.8 kb virus-like circular DNA components were recovered, one encoding a replication-associated protein (Rep) and the other a capsid protein (CP). Both of the inferred protein sequences of the Rep and CP are homologous to those encoded by members of the family Geminiviridae. These two putatively cognate components each have a nonanucleotide sequence within a likely hairpin structure that is homologous to the origins of rolling-circle replication (RCR), found in diverse circular single-stranded DNA viruses. In addition, the two components share similar putative replication-associated iterative sequences (iterons), which in circular single-stranded DNA viruses are important for Rep binding during the initiation of RCR. Such molecular features provide support for the possible bipartite nature of this virus, which we named utkilio virus (common name of the Opuntia discolor in South America) components A and B. In the infectivity assays conducted in Nicotiana benthamiana plants, only the A component of utkilio virus, which encodes the Rep protein, was found to move and replicate systemically in N. benthamiana. This was not true for component B, for which we did not detect replication, which may have been due to this being a defective molecule or because of the model plants (N. benthamiana) used for the infection assays. Future experiments need to be conducted with other plants, including O. discolor, to understand more about the biology of these viral components.


Assuntos
Vírus de DNA/isolamento & purificação , DNA Circular/genética , DNA Viral/genética , Geminiviridae/genética , Opuntia/virologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Vírus de DNA/classificação , Vírus de DNA/genética , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Genoma Viral , Filogenia
10.
Sci Rep ; 11(1): 21280, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711837

RESUMO

Emerging viral diseases of plants are recognised as a growing threat to global food security. However, little is known about the evolutionary processes and ecological factors underlying the emergence and success of viruses that have caused past epidemics. With technological advances in the field of ancient genomics, it is now possible to sequence historical genomes to provide a better understanding of viral plant disease emergence and pathogen evolutionary history. In this context, herbarium specimens represent a valuable source of dated and preserved material. We report here the first historical genome of a crop pathogen DNA virus, a 90-year-old African cassava mosaic virus (ACMV), reconstructed from small RNA sequences bearing hallmarks of small interfering RNAs. Relative to tip-calibrated dating inferences using only modern data, those performed with the historical genome yielded both molecular evolution rate estimates that were significantly lower, and lineage divergence times that were significantly older. Crucially, divergence times estimated without the historical genome appeared in discordance with both historical disease reports and the existence of the historical genome itself. In conclusion, our study reports an updated time-frame for the history and evolution of ACMV and illustrates how the study of crop viral diseases could benefit from natural history collections.


Assuntos
Begomovirus/genética , Evolução Molecular , Manihot/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA de Plantas/genética , Teorema de Bayes , Begomovirus/classificação , Genoma Viral , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Filogenia , Análise de Sequência de DNA
11.
Viruses ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946382

RESUMO

Geminiviruses are a group of plant-infecting viruses with single-stranded DNA genomes. Within this family, viruses in the genus Begomovirus are known to have a worldwide distribution causing a range of severe diseases in a multitude of dicotyledonous plant species. Begomoviruses are transmitted by the whitefly Bemisia tabaci, and their ssDNA genomes can be either monopartite or bipartite. As part of a viral survey, various plants including those in the families Alliaceae, Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Cactaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Malvaceae, Oleaceae and Solanaceae were sampled and screened for begomoviruses using both a high-throughput sequencing and a begomovirus-specific primer pair approach. Based on the sequences derived using these approaches, the full-length genome of various begomoviruses were amplified from plants using abutting primers. Squash leaf curl virus (SLCV) and watermelon chlorotic stunt virus (WCSV) were identified in Cactaceae (n = 25), Solanaceae (n = 7), Cucurbitaceae (n = 2) and Lamiaceae (n = 1) samples. WCSV is an Old World bipartite begomovirus that has only recently been discovered infecting watermelons in the Americas. Our discovery of WCSV in the USA is the first indication that it has reached this country and indicates that this virus might be widespread throughout North America. Phylogenetic analysis suggests WCSV was introduced to the New World twice. The detection of begomoviruses in cactus plants suggests possible spillover events from agricultural areas into native vegetation. Since WCSV and SLCV have previously been found in mixed infections, pseudo-recombination infection experiments were conducted. We demonstrate that WCSV DNA-B is successfully trans-replicated by SLCV DNA-A despite very low degree of similarity between the replication-associated iterative sequences present in their common region, an essential feature for binding of the replication associated protein. This study highlights the importance of viral surveys for the detection of spillover events into native vegetation, but also suggests the need for more surveillance of WCSV in the USA, as this virus is a serious threat to watermelon cultivation in the Middle East.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Vírus de Plantas/classificação , Vírus de Plantas/genética , Begomovirus/isolamento & purificação , Biologia Computacional/métodos , Genoma Viral , Genômica/métodos , América do Norte , Fenótipo , Vírus de Plantas/isolamento & purificação , Plantas/virologia , Recombinação Genética , Análise de Sequência de DNA
12.
Microorganisms ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922452

RESUMO

Next-generation sequencing (NGS), through the implementation of metagenomic protocols, has led to the discovery of thousands of new viruses in the last decade. Nevertheless, these protocols are still laborious and costly to implement, and the technique has not yet become routine for everyday virus characterization. Within the context of CRESS DNA virus studies, we implemented two alternative long-read NGS protocols, one that is agnostic to the sequence (without a priori knowledge of the viral genome) and the other that use specific primers to target a virus (with a priori). Agnostic and specific long read NGS-based assembled genomes of two capulavirus strains were compared to those obtained using the gold standard technique of Sanger sequencing. Both protocols allowed the detection and accurate full genome characterization of both strains. Globally, the assembled genomes were very similar (99.5-99.7% identity) to the Sanger sequences consensus, but differences in the homopolymeric tracks of these sequences indicated a specific lack of accuracy of the long reads NGS approach that has yet to be improved. Nevertheless, the use of the bench-top sequencer has proven to be a credible alternative in the context of CRESS DNA virus study and could offer a new range of applications not previously accessible.

13.
Viruses ; 13(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923787

RESUMO

The family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti. Recent research efforts in non-cultivated and asymptomatic plants have shown that the diversity of this viral family has been under-sampled. As a consequence, little is known about the effects and interactions of geminiviruses in many plants, such as cacti. With the objective to expand knowledge on the diversity of geminiviruses infecting cacti, we used previously acquired high-throughput sequencing results to search for viral sequences using BLASTx against a viral RefSeq protein database. We identified two additional sequences with similarity to geminiviruses, for which we designed abutting primers and recovered full-length genomes. From 42 cacti and five scale insects, we derived 42 complete genome sequences of a novel geminivirus species that we have tentatively named Opuntia virus 2 (OpV2) and 32 genomes of an Opuntia-infecting becurtovirus (which is a new strain of the spinach curly top Arizona virus species). Interspecies recombination analysis of the OpV2 group revealed several recombinant regions, in some cases spanning half of the genome. Phylogenetic analysis demonstrated that OpV2 is a novel geminivirus more closely related to viruses of the genus Curtovirus, which was further supported by the detection of three recombination events between curtoviruses and OpV2. Both OpV2 and Opuntia becurtoviruses were identified in mixed infections, which also included the previously characterized Opuntia virus 1. Viral quantification of the co-infected cactus plants compared with single infections did not show any clear trend in viral dynamics that might be associated with the mixed infections. Using experimental Rhizobium-mediated inoculations, we found that the initial accumulation of OpV2 is facilitated by co-infection with OpV1. This study shows that the diversity of geminiviruses that infect cacti is under-sampled and that cacti harbor diverse geminiviruses. The detection of the Opuntia becurtoviruses suggests spill-over events between viruses of cultivated species and native vegetation. The threat this poses to cacti needs to be further investigated.


Assuntos
Cactaceae/virologia , Geminiviridae , Hemípteros/virologia , Doenças das Plantas/virologia , Animais , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Genoma Viral
14.
Arch Virol ; 166(6): 1755-1758, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33743049

RESUMO

In this report, we present the first description of the complete genome sequences of a new monopartite begomovirus isolated from tomato with symptoms of interveinal yellowing of leaves collected in the region of Worodougou in the northwest of Côte d'Ivoire and provisionally named "tomato interveinal yellowing virus" (ToIYV). The DNA-A-like nucleotide sequences of ToIYV share the highest nucleotide sequence identity (83%) with tobacco leaf curl Zimbabwe virus (ToLCZWV). Phylogenetic analysis confirmed that ToIYV is related to Old World monopartite begomoviruses. The discovery of a member of a new virus species on diseased tomato plants confirms the high genetic diversity in monopartite begomoviruses in West Africa and stresses the importance of maintaining epidemiological crop surveillance.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Sequência de Bases , Côte d'Ivoire , DNA Viral/genética , Filogenia
15.
Gigascience ; 10(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527143

RESUMO

BACKGROUND: Efficiently managing large, heterogeneous data in a structured yet flexible way is a challenge to research laboratories working with genomic data. Specifically regarding both shotgun- and metabarcoding-based metagenomics, while online reference databases and user-friendly tools exist for running various types of analyses (e.g., Qiime, Mothur, Megan, IMG/VR, Anvi'o, Qiita, MetaVir), scientists lack comprehensive software for easily building scalable, searchable, online data repositories on which they can rely during their ongoing research. RESULTS: metaXplor is a scalable, distributable, fully web-interfaced application for managing, sharing, and exploring metagenomic data. Being based on a flexible NoSQL data model, it has few constraints regarding dataset contents and thus proves useful for handling outputs from both shotgun and metabarcoding techniques. By supporting incremental data feeding and providing means to combine filters on all imported fields, it allows for exhaustive content browsing, as well as rapid narrowing to find specific records. The application also features various interactive data visualization tools, ways to query contents by BLASTing external sequences, and an integrated pipeline to enrich assignments with phylogenetic placements. The project home page provides the URL of a live instance allowing users to test the system on public data. CONCLUSION: metaXplor allows efficient management and exploration of metagenomic data. Its availability as a set of Docker containers, making it easy to deploy on academic servers, on the cloud, or even on personal computers, will facilitate its adoption.


Assuntos
Metagenômica , Software , Genômica , Metagenoma , Filogenia
16.
Arch Virol ; 166(3): 955-959, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33502595

RESUMO

Maize streak disease (MSD) is one of the most significant biotic constraints on the production of Africa's most important cereal crop. Until recently, the only virus known to cause severe MSD was the A-strain of maize streak virus (MSV/A), a member of the genus Mastrevirus, family Geminiviridae. However, over the past decade, two other mastreviruses, MSV/C and maize streak Réunion virus (MSRV), have been repeatedly found in the absence of MSV/A in maize plants displaying severe MSD symptoms. Here, we report on infectious clones of MSV/C and MSRV and test their ability to cause severe MSD symptoms. Although cloned MSV/C and MSRV genomes could cause systemic symptomatic infections in MSD-sensitive maize genotypes, these infections yielded substantially milder symptoms than those observed in the field. The MSV/C and MSRV isolates that we have examined are therefore unlikely to cause severe MSD on their own. Furthermore, mixed infections of MSRV and MSV/C with other mild MSV strains also consistently yielded mild MSD symptoms. It is noteworthy that MSRV produces distinctive striate symptoms in maize that are similar in pattern, albeit not in severity, to those seen in the field, showing that this virus may contribute to the severe MSD symptoms seen in the field. Therefore, despite not fulfilling Koch's postulates for MSV/C and MSRV as causal agents of severe MSD, we cannot exclude the possibility that these viruses could be contributing to currently emerging maize diseases.


Assuntos
Vírus do Listrado do Milho/patogenicidade , Doenças das Plantas/virologia , Zea mays/virologia , DNA Viral/genética , Genoma Viral/genética , Genótipo , Vírus do Listrado do Milho/genética , Vírus do Listrado do Milho/isolamento & purificação , Filogenia , Análise de Sequência de DNA
17.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414287

RESUMO

High-quality Illumina assemblies were produced from 284 Xanthomonas citri pv. citri pathotype A strains mostly originating from the Southwest Indian Ocean region, a subset of which was also sequenced using MinION technology. Some strains hosted chromosomally encoded transcription activator-like effector (TALE) genes, an atypical feature for this bacterium.

18.
Mol Ecol ; 30(8): 1823-1835, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305421

RESUMO

Horizontal gene transfer is of major evolutionary importance as it allows for the redistribution of phenotypically important genes among lineages. Such genes with essential functions include those involved in resistance to antimicrobial compounds and virulence factors in pathogenic bacteria. Understanding gene turnover at microevolutionary scales is critical to assess the pace of this evolutionary process. Here, we characterized and quantified gene turnover for the epidemic lineage of a bacterial plant pathogen of major agricultural importance worldwide. Relying on a dense geographic sampling spanning 39 years of evolution, we estimated both the dynamics of single nucleotide polymorphism accumulation and gene content turnover. We identified extensive gene content variation among lineages even at the smallest phylogenetic and geographic scales. Gene turnover rate exceeded nucleotide substitution rate by three orders of magnitude. Accessory genes were found preferentially located on plasmids, but we identified a highly plastic chromosomal region hosting ecologically important genes such as transcription activator-like effectors. Whereas most changes in the gene content are probably transient, the rapid spread of a mobile element conferring resistance to copper compounds widely used for the management of plant bacterial pathogens illustrates how some accessory genes can become ubiquitous within a population over short timeframes.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma Bacteriano , Doenças das Plantas/microbiologia , Bactérias , Filogenia
19.
Arch Virol ; 165(12): 2891-2901, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893316

RESUMO

Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identified through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17).


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/isolamento & purificação , Genoma Viral , Plantas/virologia , Austrália , Brasil , Vírus de DNA/classificação , França , Metagenômica , Filogenia , África do Sul , Estados Unidos
20.
Arch Virol ; 165(8): 1925-1928, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32506147

RESUMO

Nine complete nucleotide sequences of geminialphasatellites (subfamily Geminialphasatellitinae, family Alphasatellitidae) recovered from the wild Poaceae Sorghum arundinaceum collected in Reunion are described and analyzed. While the helper geminivirus was identified as an isolate of maize streak virus (genus Mastrevirus, family Geminiviridae), the geminialphasatellite genomes were most closely related to, and shared ~63% identity with, clecrusatellites. Even though the geminialphasatellite molecules lack an adenine rich-region, they have the typical size of geminialphasatellites, encode a replication-associated protein in the virion sense, and have probable stem-loop structures at their virion-strand origins of replication. According to the proposed geminialphasatellite species and genus demarcation thresholds (88% and 70% nucleotide identity, respectively), the genomes identified here represent a new species (within a new genus) for which we propose the name "Sorghum mastrevirus-associated alphasatellite" (genus "Sorgasalphasatellite").


Assuntos
Geminiviridae/genética , Vírus do Listrado do Milho/genética , Poaceae/virologia , Sorghum/virologia , Genoma Viral/genética , Filogenia , Doenças das Plantas/virologia , Reunião , Análise de Sequência de DNA/métodos , Zea mays/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA